rdfs:comment
| - Вейвлеты (от англ. wavelet), всплески (написание вэйвлеты уже почти не употребляется) — это математические функции, позволяющие анализировать различные частотные компоненты данных. Слово «вейвлет» является калькой с английского «wavelet», что означает в переводе «маленькая волна», или «волны, идущие друг за другом». И тот и другой перевод подходит к определению вейвлетов. Вейвлеты — это семейство функций, которые локальны во времени и по частоте («маленькие»), и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они «идут друг за другом»). Иногда вейвлеты называют всплесками.
|
abstract
| - Вейвлеты (от англ. wavelet), всплески (написание вэйвлеты уже почти не употребляется) — это математические функции, позволяющие анализировать различные частотные компоненты данных. Слово «вейвлет» является калькой с английского «wavelet», что означает в переводе «маленькая волна», или «волны, идущие друг за другом». И тот и другой перевод подходит к определению вейвлетов. Вейвлеты — это семейство функций, которые локальны во времени и по частоте («маленькие»), и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они «идут друг за другом»). Иногда вейвлеты называют всплесками. Все вейвлет-преобразования рассматривают функцию (взятую будучи функцией от времени) в терминах колебаний, локализованных по времени и частоте. Вейвлет-преобразования обычно делят на дискретное вейвлет-преобразование (ДВП) и непрерывное вейвлет-преобразование (НВП). Если рассматривать применение, то ДВП обычно используется для кодирования сигналов, в то время как НВП для анализа сигналов. В результате, ДВП широко применяется в инженерном деле и компьютерных науках, а НВП в научных исследованиях. Вейвлет-преобразования в настоящее время приняты на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье во многих применениях. Эта смена парадигмы наблюдается во многих областях физики, включая молекулярную динамику, вычисления ab initio, астрофизику, локализацию матрицы плотности, сейсмическую геофизику, оптику, турбулентность, квантовую механику, обработку изображений, анализы кровяного давления, пульса и ЭКГ, анализ ДНК, исследования белков, исследования климата, общую обработку сигналов, распознавание речи, компьютерную графику и мультифрактальный анализ и другие. Разработка вейвлетов связана с несколькими отдельными нитями рассуждений, начавшимися с работ Хаара в начале двадцатого века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие то, что сейчас известно как НВП (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла, предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование и многие другие. Теория вейвлетов связана с несколькими другими методиками. Все вейвлет-преобразования могут рассматриваться как разновидность временно-частотного представления и, следовательно относятся к предмету гармонического анализа. Дискретное вейвлет преобразование может рассматриваться как разновидность фильтра конечного импульсного отклика. Вейвлеты, образующие НВП подчиняются принципу неопределенности Гейзенберга и соответственно базис дискретного вейвлета также может рассматриваться в контексте других форм принципа неопределённости.
|