About: Electrical reactance   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

In electrical and electronic systems, reactance is the opposition of a circuit element to a change of electric current or voltage, due to that element's inductance or capacitance. A built-up electric field resists the change of voltage on the element, while a magnetic field resists the change of current. The notion of reactance is similar to electrical resistance, but they differ in several respects. An ideal resistor has zero reactance, while ideal inductors and capacitors consist entirely of reactance.

AttributesValues
rdfs:label
  • Electrical reactance
rdfs:comment
  • In electrical and electronic systems, reactance is the opposition of a circuit element to a change of electric current or voltage, due to that element's inductance or capacitance. A built-up electric field resists the change of voltage on the element, while a magnetic field resists the change of current. The notion of reactance is similar to electrical resistance, but they differ in several respects. An ideal resistor has zero reactance, while ideal inductors and capacitors consist entirely of reactance.
sameAs
dcterms:subject
dbkwik:units/prope...iPageUsesTemplate
abstract
  • In electrical and electronic systems, reactance is the opposition of a circuit element to a change of electric current or voltage, due to that element's inductance or capacitance. A built-up electric field resists the change of voltage on the element, while a magnetic field resists the change of current. The notion of reactance is similar to electrical resistance, but they differ in several respects. Capacitance and inductance are inherent properties of an element, just like resistance; their reactive effects are not exhibited under constant direct current, but only when the conditions in the circuit change. Thus, the reactance differs with the rate of change, and is a constant only for circuits under alternating current of constant frequency. In vector analysis of electric circuits, resistance is the real part of complex impedance, while reactance is the imaginary part. Both share the same SI unit, the ohm. An ideal resistor has zero reactance, while ideal inductors and capacitors consist entirely of reactance.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software