The alternating factorial of a number n is \(\sum^n_{i = 1} (-1)^{n - i} \cdot i!\), or the alternating sum of all the factorials up to n. For example, the alternating factorial of 5 is \(1! - 2! + 3! - 4! + 5!=101\).
| Attributes | Values |
|---|---|
| rdfs:label |
|
| rdfs:comment |
|
| sameAs | |
| dcterms:subject | |
| dbkwik:googology/p...iPageUsesTemplate | |
| abstract |
|