About: Stochastic Process   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

This page contains resources about Stochastic Processes, Stochastic Systems, Random Processes and Random Fields. More specific information is included in each subfield.

AttributesValues
rdfs:label
  • Stochastic Process
  • Stochastic process
rdfs:comment
  • This page contains resources about Stochastic Processes, Stochastic Systems, Random Processes and Random Fields. More specific information is included in each subfield.
  • A stochastic process, or sometimes random process, is the counterpart to a deterministic process (or deterministic system) in probability theory. Instead of dealing with only one possible 'reality' of how the process might evolve under time (as is the case, for example, for solutions of an ordinary differential equation), in a stochastic or random process there is some indeterminacy in its future evolution described by probability distributions. This means that even if the initial condition (or starting point) is known, there are many possibilities the process might go to, but some paths are more probable and others less.
sameAs
dcterms:subject
dbkwik:freespeech/...iPageUsesTemplate
abstract
  • This page contains resources about Stochastic Processes, Stochastic Systems, Random Processes and Random Fields. More specific information is included in each subfield.
  • A stochastic process, or sometimes random process, is the counterpart to a deterministic process (or deterministic system) in probability theory. Instead of dealing with only one possible 'reality' of how the process might evolve under time (as is the case, for example, for solutions of an ordinary differential equation), in a stochastic or random process there is some indeterminacy in its future evolution described by probability distributions. This means that even if the initial condition (or starting point) is known, there are many possibilities the process might go to, but some paths are more probable and others less. In the simplest possible case ('discrete time'), a stochastic process amounts to a sequence of random variables known as a time series (for example, see Markov chain). Another basic type of a stochastic process is a random field, whose domain is a region of space, in other words, a random function whose arguments are drawn from a range of continuously changing values. One approach to stochastic processes treats them as functions of one or several deterministic arguments ('inputs', in most cases regarded as 'time') whose values ('outputs') are random variables: non-deterministic (single) quantities which have certain probability distributions. Random variables corresponding to various times (or points, in the case of random fields) may be completely different. The main requirement is that these different random quantities all have the same 'type'. Although the random values of a stochastic process at different times may be independent random variables, in most commonly considered situations they exhibit complicated statistical correlations. Familiar examples of processes modeled as stochastic time series include stock market and exchange rate fluctuations, signals such as speech, audio and video, medical data such as a patient's EKG, EEG, blood pressure or temperature, and random movement such as Brownian motion or random walks. Examples of random fields include static images, random terrain (landscapes), or composition variations of an inhomogeneous material.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software