About: Multiplication (quaternions)   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The multiplication of quaternions was defined by their inventor Maxwell as follows: Given two quaternions: q = a +b.i +c.j + d.k r = e +f.i +g.j + h.k where the coefficients a through h are real, the product is given by the rules: i.i = j.j =k.k = i.j.k = -1 i.j=k j.k=i k.i=j j.i=-k k.j=-i i.k=-j Thus q.r = a.e -b.f - h.c - hd + (e.b +b.f +h.c -g.d).i + (e.c +a.g +d.f -b.h).j+ (e.d +a.h +b.g -f.c ).k

AttributesValues
rdfs:label
  • Multiplication (quaternions)
rdfs:comment
  • The multiplication of quaternions was defined by their inventor Maxwell as follows: Given two quaternions: q = a +b.i +c.j + d.k r = e +f.i +g.j + h.k where the coefficients a through h are real, the product is given by the rules: i.i = j.j =k.k = i.j.k = -1 i.j=k j.k=i k.i=j j.i=-k k.j=-i i.k=-j Thus q.r = a.e -b.f - h.c - hd + (e.b +b.f +h.c -g.d).i + (e.c +a.g +d.f -b.h).j+ (e.d +a.h +b.g -f.c ).k
dcterms:subject
abstract
  • The multiplication of quaternions was defined by their inventor Maxwell as follows: Given two quaternions: q = a +b.i +c.j + d.k r = e +f.i +g.j + h.k where the coefficients a through h are real, the product is given by the rules: i.i = j.j =k.k = i.j.k = -1 i.j=k j.k=i k.i=j j.i=-k k.j=-i i.k=-j Thus q.r = a.e -b.f - h.c - hd + (e.b +b.f +h.c -g.d).i + (e.c +a.g +d.f -b.h).j+ (e.d +a.h +b.g -f.c ).k
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software