abstract
| - right|thumb|350px|Шар можно «разбить» на куски и собрать из них два таких же шара. Парадокс Банаха — Тарского, или парадокс удвоения шара, говорит, что трёхмерный шар равносоставлен двум своим копиям. Два подмножества евклидова пространства называются равносоставленными, если одно можно разбить на конечное число «кусков» и составить из них второе. При этом для удвоения шара достаточно пяти кусков, но четырёх недостаточно. Более точно, два множества и являются равносоставленными, если их можно представить как конечное объединение непересекающихся подмножеств , так, что для каждого подмножество конгруэнтно . Верен также более сильный вариант парадокса: Ввиду своей неправдоподобности, этот парадокс часто используется как довод против принятия аксиомы выбора, которая существенно используется при построении такого разбиения. Принятие подходящей альтернативной аксиомы позволяет доказать невозможность указанного разбиения, не оставляя места для этого парадокса. Парадокс был открыт в 1926 году Стефаном Банахом и Альфредом Тарским. Очень похож на более ранний парадокс Хаусдорфа и его доказательство основано на той же идее. Поэтому более правильно называть парадоксом Хаусдорфа — Банаха — Тарского.
|