abstract
| - В экологической литературе термин «экологическая устойчивость» используется в следующих значениях: 1) способность экосистемы сохранять при внешнем воздействии исходное состояние в течение некоторого времени - инертность системы (резистентная устойчивость, буферность); 2) способность экосистемы переходить из одного состояния равновесия в др., сохраняя при этом внутренние связи – пластичность системы; 3) способность экосистемы возвращаться в исходное состояние после временного внешнего воздействия - восстанавливаемость системы (упругая устойчивость, эластичность). Первые два понятия трактуются как адаптационная устойчивость, третье – как регенерационная. Если та или иная функция экосистемы под воздействием возмущения отклоняется от «нормы», степень этого отклонения показывает относительную устойчивость системы, а время, необходимое для восстановления «нормы», - ее относительную упругость. Существует несколько разных механизмов обеспечения экологической устойчивости: 1) постоянство достигается благодаря действию отрицательных обратных связей, сохраняющих экосистему в устойчивом состоянии (гомеостаз). В этом случае действует принцип Ле Шателье-Брауна: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется; 2) экологическая устойчивость обеспечивается избыточностью функциональных элементов. Напр., если в состав сообщества входят несколько популяций автотрофных организмов, каждая из которых имеет свой оптимум температуры для фотосинтеза, то фотосинтез сообщества в целом будет слабо изменяться при колебании температуры в определенных условиях. В этом случае устойчивость экосистемы прямо связана с ее видовым разнообразием; 3) адаптация - перестройка структурных элементов системы без существенного изменения ее функций. Перестройка может быть и необратимой, например, в процессе эволюции. Популяции или виды в целом развиваются в экосистемах в окружении других видов. При изучении палеоботаники «былых биосфер» Вернадский показал, что в процессе эволюции жизни на Земле структура биогеоценозов существенно менялась и усложнялась (вначале хемотрофы, затем фототрофы и т.д.). С появлением первых фототрофов (водорослей) процесс формирования первичных экосистем закончился, и цепь круговорота веществ замыкается, но были избыточные биогенные продукты → появились гетеротрофы и т.д., но эти экосистемы были неустойчивы, быстро появлялись и распадались (т.е. микроорганизмы быстро размножались – быстрая смена поколений) → эволюция ускорялась. Возникновение многоклеточных организмов сопровождалось увеличением устойчивости экосистем. При выходе растений на сушу → много новых местообитаний → быстрая эволюция → огромное количество органического вещества оказывалось не потребленным и выводилось из биотического круговорота в виде дошедших до нас угля, нефти и т.д. пока не появилось достаточное количество консументов. Середина мела – появились травянистые растения и однолетники → разное ускорение кругов биогенных веществ, т.к. было много животных и грызунов. Важным успехом было образование биотического круговорота – создание таких жизненных сред, в которых одна и та же порция вещества может многократно использоваться. Это стало возможным, когда возникла триада: продуцент → консумент → редуцент. Дальнейшее направление эволюции экосистем вело к уменьшению потребления вещества из биотических круговоротов и интенсификации миграции химических элементов (у животных это появление теплокровности, т.к. млекопитающие затрачивают на создание своей биомассы всего 1% потребляемых ими веществ; у растений это – появление однолетников). В процессе развития жизни происходит усложнение экосистем. Основной интегрирующий фактор в жизни биогеоценоза – пищевые взаимоотношения. Определенная сложная структура биогеоценоза оказывается необходимой предпосылкой для поддержания его устойчивости. Наиболее хрупкие и неустойчивые экосистемы с наименьшим числом компонентов (тундра). Наиболее устойчивы экосистемы тропического леса, где потоки вещества и энергии многократно дублируются (очень много видов и малая численность каждого) – выдерживает потерю процента составляющих их компонентов без ущерба для функционирования.
* Но, сейчас считают, что решающими в устойчивости экосистем факторами являются не число видов, а экологические особенности видов. Например, при современной антропогенной нагрузке преимущество в экосистеме получают короткоживущие виды (эфемеры) успевающие в результате быстрой смены поколений приспособиться к меняющимся условиям. Итак, устойчивость экосистем поддерживается благодаря сбалансированному воспроизведению каждого из множества ее компонентов – популяций. Устойчивость обеспечивается в процессе взаимодействия видов между собой на фоне комплекса физических факторов. Все экосистемы являются реальной средой для межвидовых взаимоотношений, → постоянные взаимодействия всех компонентов биогеоценоза оказываются причиной изменения биогеоценоза и других экосистем → преобразование биосферы. Смена биогеоценозов – сукцессия. Климаксовое сообщество – в равновесии с окружающей средой устойчиво. Общие черты изменения биогеоценозов: 1) все биотические системы динамичны и подвижны, чутко реагируют на влияние внешней среды; 2) в процессе развития экосистемы наблюдается удлинение цепей питания, увеличение числа трофических уровней → происходит дифференциация потоков вещества и энергии (узкая пищевая специализация видов); 3) в результате удлинения цепей питания увеличивается время удержания вещества и энергии (появляется круг долгоживущих организмов). Источник: Категория:Экология Категория:Понятия
|