abstract
| - The so-called elementary charge is one of the fundamental physical constants and accurate knowledge of its value is of great importance. His experiment measured the force on tiny charged droplets of oil suspended against gravity between two metal electrodes. Knowing the electric field, the charge on the droplet could be determined. Repeating the experiment for many droplets, Millikan showed that the results could be explained as integer multiples of a common value (1.592 × 10−19 coulombs), the charge on a single electron. Although at the time of Millikan and Fletcher's oil drop experiments it was becoming clear that there exist such things as subatomic particles, not everyone was convinced. Experimenting with cathode rays in 1897, J. J. Thomson had discovered negatively charged "corpuscles", as he called them, with a mass about 1000 times smaller than that of a hydrogen atom. Similar results had been found by George FitzGerald and Walter Kaufmann. Most of what was then known about electricity and magnetism, however, could be explained on the basis that charge is a continuous variable; in much the same way that many of the properties of light can be explained by treating it as a continuous wave rather than as a stream of photons. The beauty of the oil drop experiment is that as well as allowing quite accurate determination of the fundamental unit of charge Millikan and Fletcher's apparatus also provides a "hands on" demonstration that charge is actually quantized. It demonstrates this simply and elegantly. Thomas Edison, who had previously thought that charge is a continuous variable, became convinced after having a go with Millikan and Fletcher's apparatus. There is some controversy over the use of selectivity in Millikan's results of his second experiment measuring the electron charge raised by the historian Gerald Holton. Holton (1978) pointed out that Millikan disregarded a large set of the oil-drops gained in his experiments without apparent reason. Allan Franklin, a former high energy experimentalist and current philosopher of science at the University of Colorado has tried to rebut this point by Holton. Franklin contends that Millikan's exclusions of data did not affect the final value of e that Millikan obtained but concedes that there was substantial "cosmetic surgery" that Millikan performed which had the effect of reducing the statistical error on e. This enabled Millikan to quote the figure that he had calculated e to better than one half of one percent; in fact, if Millikan had included all of the data he threw out, it would have been to within 2%. While this would still have resulted in Millikan having measured e better than anyone else at the time, the slightly larger uncertainty might have allowed more disagreement with his results within the physics community. In 1923, Millikan won the Nobel Prize for physics in part because of this experiment. This experiment has since been repeated by generations of physics students, although it is rather expensive and difficult to do properly.
|