About: dbkwik:resource/yWrg_mG7yN9TBdC7XmjkBA==   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

AttributesValues
rdfs:label
  • Скалярное произведение
rdfs:comment
  • Скаля́рное произведе́ние — определённая на линейном пространстве над полем вещественных (или комплексных) чисел симметричная билинейная форма (соответственно, эрмитова форма), рассматриваемая в качестве составной части определения этого пространства. Чаще всего рассматривается случай, когда скалярное произведение является положительно определённым. В этом случае на пространстве можно ввести порождённую скалярным произведением норму вида удовлетворяющую неравенству Коши — Буняковского.
dcterms:subject
dbkwik:ru.math/pro...iPageUsesTemplate
abstract
  • Скаля́рное произведе́ние — определённая на линейном пространстве над полем вещественных (или комплексных) чисел симметричная билинейная форма (соответственно, эрмитова форма), рассматриваемая в качестве составной части определения этого пространства. Чаще всего рассматривается случай, когда скалярное произведение является положительно определённым. В этом случае на пространстве можно ввести порождённую скалярным произведением норму вида удовлетворяющую неравенству Коши — Буняковского. Пространство (вещественное или комплексное) с положительно определённым скалярным произведением называется предгильбертовым пространством. При этом конечномерное вещественное пространство с положительно определённым скалярным произведением называется также евклидовым, а комплексное — эрмитовым или унитарным пространством. Случай, когда скалярное произведение не является знакоопределённым, приводит к т.н. пространствам с индефинитной метрикой. Скалярное произведение в таких пространствах уже не порождает нормы (и она обычно вводится дополнительно). Конечномерное вещественное пространство с индефинитной метрикой называется псевдоевклидовым (важнейшим частным случаем такого пространства является пространство Минковского). Среди бесконечномерных пространств с индефинитной метрикой важную роль играют пространства Понтрягина и пространства Крейна.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software