About: New Energy Forms   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

In particle physics, antimatter extends the concept of the antiparticle to matter, wherein if a particle and its antiparticle come into contact with each other, the two annihilate or cause the equivalent to a nuclear explosion, similar to nuclear fission —that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. This gives rise to high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle-antiparticle pair, which is often quite large.

AttributesValues
rdfs:label
  • New Energy Forms
rdfs:comment
  • In particle physics, antimatter extends the concept of the antiparticle to matter, wherein if a particle and its antiparticle come into contact with each other, the two annihilate or cause the equivalent to a nuclear explosion, similar to nuclear fission —that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. This gives rise to high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle-antiparticle pair, which is often quite large.
dcterms:subject
abstract
  • In particle physics, antimatter extends the concept of the antiparticle to matter, wherein if a particle and its antiparticle come into contact with each other, the two annihilate or cause the equivalent to a nuclear explosion, similar to nuclear fission —that is, they may both be converted into other particles with equal energy in accordance with Einstein's equation E = mc2. This gives rise to high-energy photons (gamma rays) or other particle–antiparticle pairs. The resulting particles are endowed with an amount of kinetic energy equal to the difference between the rest mass of the products of the annihilation and the rest mass of the original particle-antiparticle pair, which is often quite large. Antimatter is not found naturally on Earth, except very briefly and in ephemerally small quantities (as the result of radioactive decay or cosmic rays). This is because antimatter which comes to exist on Earth outside the confines of a suitably equipped physics laboratory would inevitably come into contact with the ordinary matter that Earth is made of, and be annihilated. Antiparticles and some stable antimatter (such as antihydrogen) can be made in minuscule amounts, but not in enough quantity to do more than test a few of its theoretical properties. There is considerable speculation both in science and science fiction as to why the observable universe is apparently almost entirely matter, whether other places are almost entirely antimatter instead, and what might be possible if antimatter could be harnessed, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. Possible processes by which it came about are explored in more detail under baryogenesis.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software