The kaboodol can be defined by following these steps: 1. * Define \(f^{x}(n)\) as \(\underbrace{f(f(f(\ldots n\ldots)))}_x\). 2. * Define \(f\uparrow\uparrow x (n)\) as \(\underbrace{f^{f^{f^{.^{.^{.^{f(n)}.}.}.}(n)}(n)}(n)}_x\). 3. * Continue, using Chained Arrow Notation. 4. * Define \(f(n)\) as \( ext{hyper}(n,n,n)\). 5. * Kaboodol is \(fightarrow \underbrace{10 ightarrow\ldotsightarrow 10}_{100}(100)\). Kaboodol is larger than \(\underbrace{10 ightarrow\ldotsightarrow 10}_{102}\), but smaller than \(\underbrace{10 ightarrow\ldotsightarrow 10}_{103}\)
| Attributes | Values |
|---|---|
| rdfs:label |
|
| rdfs:comment |
|
| dcterms:subject | |
| dbkwik:googology/p...iPageUsesTemplate | |
| abstract |
|