About: dbkwik:resource/5kQs626CbzOrFwhEKRUK_g==   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

AttributesValues
rdfs:label
  • Математическая статистика
rdfs:comment
  • Математи́ческая стати́стика — наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании).
  • Математи́ческая стати́стика — наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании). Image:Science.jpg Категория:Незавершённые статьи
dcterms:subject
dbkwik:ru.math/pro...iPageUsesTemplate
dbkwik:ru.science/...iPageUsesTemplate
abstract
  • Математи́ческая стати́стика — наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании). Математическая статистика - наука о математических методах анализа данных, полученных при проведении массовых наблюдений (измерений, опытов). В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел, многомерный статистический анализ, анализ функций (процессов) и временных рядов, статистику объектов нечисловой природы. Существенная часть статистики математической основана на вероятностных моделях. Выделяют общие задачи описания данных, оценивания и проверки гипотез. Рассматривают и более частные задачи, связанные с проведением выборочных обследований, восстановлением зависимостей, построением и использованием классификаций (типологий) и др. Для описания данных строят таблицы, диаграммы, иные наглядные представления, например, корреляционные поля. Вероятностные модели обычно не применяются. Некоторые методы описания данных опираются на продвинутую теорию и возможности современных компьютеров. К ним относятся, в частности, кластер-анализ, нацеленный на выделение групп объектов, похожих друг на друга, и многомерное шкалирование, позволяющее наглядно представить объекты на плоскости, в наименьшей степени исказив расстояния между ними. Методы оценивания и проверки гипотез опираются на вероятностные модели порождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается, что изучаемые объекты описываются функциями распределения, зависящими от небольшого числа (1-4) числовых параметров. В непараметрических моделях функции распределения предполагаются произвольными непрерывными. В статистике математической оценивают параметры и характеристики распределения (математическое ожидание, медиану, дисперсию, квантили и др.), плотности и функции распределения, зависимости между переменными (на основе линейных и непараметрических коэффициентов корреляции, а также параметрических или непараметрических оценок функций, выражающих зависимости) и др. Используют точечные и интервальные (дающие границы для истинных значений) оценки. В математической статистике есть общая теория проверки гипотез и большое число методов, посвященных проверке конкретных гипотез. Рассматривают гипотезы о значениях параметров и характеристик, о проверке однородности (т.е. о совпадении характеристик или функций распределения в двух выборках), о согласии эмпирической функции распределения с заданной функцией распределения или с параметрическим семейством таких функций, о симметрии распределения и др. Большое значение имеет раздел математической статистики, связанный с проведением выборочных обследований, со свойствами различных схем организации выборок и построением адекватных методов оценивания и проверки гипотез. Задачи восстановления зависимостей активно изучаются более 200 лет, с момента разработки К. Гауссом в 1794 г. метода наименьших квадратов. В настоящее время наиболее актуальны методы поиска информативного подмножества переменных и непараметрические методы. Различные методы построения (кластер-анализ), анализа и использования (дискриминантный анализ) классификаций (типологий) именуют также методами распознавания образов (с учителем и без), автоматической классификации и др. Математические методы в статистике основаны либо на использовании сумм (на основе Центральной Предельной Теоремы теории вероятностей) или показателей различия (расстояний, метрик), как в статистике объектов нечисловой природы. Строго обоснованы обычно лишь асимптотические результаты. В настоящее время компьютеры играют большую роль в математической статистике. Они используются как для расчетов, так и для имитационного моделирования (в частности, в методах размножения выборок и при изучении пригодности асимптотических результатов). Классическая математическая статистика лучше всего представлена в [1,2]. По историческим причинам основные российские работы публикуются в [3].
  • Математи́ческая стати́стика — наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании). Image:Science.jpg Категория:Незавершённые статьи * Страница 0 - краткая статья * Страница 1 - энциклопедическая статья * Разное - на страницах: 2 , 3 , 4 , 5 * Прошу вносить вашу информацию в «Математическая статистика 1», чтобы сохранить ее
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software