About: SBUV/2   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

SBUV/2 looks down at the Earth’s atmosphere and the reflected sunlight at wavelengths characteristic of ozone. The SBUV/2 wavelength "channels" range from 252 nanometer (nm) to 340 nm. Ozone is measured as a ratio of sunlight incident on the atmosphere to the amount of sunlight scattered back into space. From this information, the total ozone between the instrument and the ground can be calculated.

AttributesValues
rdfs:label
  • SBUV/2
rdfs:comment
  • SBUV/2 looks down at the Earth’s atmosphere and the reflected sunlight at wavelengths characteristic of ozone. The SBUV/2 wavelength "channels" range from 252 nanometer (nm) to 340 nm. Ozone is measured as a ratio of sunlight incident on the atmosphere to the amount of sunlight scattered back into space. From this information, the total ozone between the instrument and the ground can be calculated.
sameAs
dcterms:subject
dbkwik:nasa/proper...iPageUsesTemplate
abstract
  • SBUV/2 looks down at the Earth’s atmosphere and the reflected sunlight at wavelengths characteristic of ozone. The SBUV/2 wavelength "channels" range from 252 nanometer (nm) to 340 nm. Ozone is measured as a ratio of sunlight incident on the atmosphere to the amount of sunlight scattered back into space. From this information, the total ozone between the instrument and the ground can be calculated. The SBUV/2 measures solar irradiance and Earth radiance (backscattered solar energy) in the near ultraviolet spectrum (160 to 400 nm). The SBUV is capable of determining the global ozone concentration in the stratosphere to an absolute accuracy of 1 percent; the vertical distribution of atmospheric ozone to an absolute accuracy of 5 percent; the long-term solar spectral irradiance from 160 to 400 nm Photochemical process and the influence of “trace” constituents on the ozone layer. The Ball Aerospace-built SBUV/2 helped to discover the ozone hole over Antarctica in 1987, and continues to monitor this phenomenon. Atmospheric ozone absorbs the sun’s ultraviolet rays, which are believed to cause gene mutations, skin cancer, and cataracts in humans. Ultraviolet rays may also damage crops and aquatic ecosystems. The first SBUV/2 instrument was launched on NOAA-9 in December 1984 and the last instrument in this series was launched in February 2009 aboard the NOAA-19 spacecraft.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software