About: Transcendental integer   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The transcendental integers are a class of huge numbers, defined by Harvey Friedman. If \(n\) is an integer then we call it transcendental iff the following holds: let M be a Turing machine, such that there is proof in ZFC of length at most 21000 showing that M halts. Then M halts in at most \(n\) steps. In other words, \(n\) is greater than halting time of every Turing machine with ZFC proof of halting of length at most 21000.

AttributesValues
rdfs:label
  • Transcendental integer
rdfs:comment
  • The transcendental integers are a class of huge numbers, defined by Harvey Friedman. If \(n\) is an integer then we call it transcendental iff the following holds: let M be a Turing machine, such that there is proof in ZFC of length at most 21000 showing that M halts. Then M halts in at most \(n\) steps. In other words, \(n\) is greater than halting time of every Turing machine with ZFC proof of halting of length at most 21000.
dcterms:subject
dbkwik:googology/p...iPageUsesTemplate
abstract
  • The transcendental integers are a class of huge numbers, defined by Harvey Friedman. If \(n\) is an integer then we call it transcendental iff the following holds: let M be a Turing machine, such that there is proof in ZFC of length at most 21000 showing that M halts. Then M halts in at most \(n\) steps. In other words, \(n\) is greater than halting time of every Turing machine with ZFC proof of halting of length at most 21000.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software