rdfs:comment
| - thumb|Пересечения прямых Аксиома параллельности Евклида или пятый постулат — одна из аксиом, лежащих в основании классической планиметрии впервые описанной в «Началах Евклида». И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых. Эквивалент аксиомы: В плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну прямую, параллельную данной.
|
abstract
| - thumb|Пересечения прямых Аксиома параллельности Евклида или пятый постулат — одна из аксиом, лежащих в основании классической планиметрии впервые описанной в «Началах Евклида». И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых. Евклид различает понятия постулат и аксиома, не объясняя их различия; в разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, равно как не совпадает их порядок. В современном издании Гейберга сформулированное утверждение является пятым постулатом. На современном языке: Если сумма внутренних углов с общей стороной, образованных двумя прямыми при пересечении их третьей, с одной из сторон от секущей меньше 180°, то эти прямые пересекаются, и притом по ту же сторону от секущей. Эквивалент аксиомы: В плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну прямую, параллельную данной. В геометрии Лобачевского вместо нее используется аксиома: «в плоскости через точку, не лежащую на данной прямой, можно провести по крайней мере две прямые, не пересекающиеся с данной», что позволяет создать альтернативную внутренне логически непротиворечивую систему.
|