The Great Mega is equal to Circle(4) or ④ or Pentagon(4) in Steinhaus-Moser notation, or M(4,3) using Hyper-Moser notation. The term was coined by Aarex Tiaokhiao. In up-arrow notation, Great Mega is between \(4 \uparrow\uparrow\uparrow 5\) and \(4 \uparrow\uparrow\uparrow 6\). Using the general notation proposed by Susan Stepney, Great Mega can be bounded more precisely in Hyper-E notation: where \[4[4]_{1} = 4[3]_{4} = 4[3][3][3][3],\] \[4[4]_{n} = 4[4]_{n-1}[4]_{1} = 4[4]_{n-1}[3]...[3], ext{with \(4[4]_{n-1}\) [3]'s and \(n \geq {2}\)}.\]
Attributes | Values |
---|
rdfs:label
| |
rdfs:comment
| - The Great Mega is equal to Circle(4) or ④ or Pentagon(4) in Steinhaus-Moser notation, or M(4,3) using Hyper-Moser notation. The term was coined by Aarex Tiaokhiao. In up-arrow notation, Great Mega is between \(4 \uparrow\uparrow\uparrow 5\) and \(4 \uparrow\uparrow\uparrow 6\). Using the general notation proposed by Susan Stepney, Great Mega can be bounded more precisely in Hyper-E notation: where \[4[4]_{1} = 4[3]_{4} = 4[3][3][3][3],\] \[4[4]_{n} = 4[4]_{n-1}[4]_{1} = 4[4]_{n-1}[3]...[3], ext{with \(4[4]_{n-1}\) [3]'s and \(n \geq {2}\)}.\]
|
dcterms:subject
| |
dbkwik:googology/p...iPageUsesTemplate
| |
abstract
| - The Great Mega is equal to Circle(4) or ④ or Pentagon(4) in Steinhaus-Moser notation, or M(4,3) using Hyper-Moser notation. The term was coined by Aarex Tiaokhiao. In up-arrow notation, Great Mega is between \(4 \uparrow\uparrow\uparrow 5\) and \(4 \uparrow\uparrow\uparrow 6\). Using the general notation proposed by Susan Stepney, Great Mega can be bounded more precisely in Hyper-E notation: \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021537\#(4[4]_{3}+4[4]_{2}+4[4]_{1}+2)\\ < ext{Great Mega} <\] \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021538\#(4[4]_{3}+4[4]_{2}+4[4]_{1}+2)\] where \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021537\#(4[4]_{2}+4[4]_{1}+2)\\ < 4[4]_{3} <\] \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021538\#(4[4]_{2}+4[4]_{1}+2),\] \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021537\#(4[4]_{1}+2)\\ < 4[4]_{2} <\] \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021538\#(4[4]_{1}+2),\] \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021537\#2\\ < 4[4]_{1} <\] \[E1992373902852015408770642294514701465291622352905945582973954623675\\ 7445592829019852096549871643037231579555867729029727837739722687243\\ 8336880416507588667030476849951479260448025007899692332294822776204\\ 2887136166511460608650162136031063640924782250697929301283423560589\\ 2457887360583787492777424798206285182369042469497447438158240050711\\ 3232450532054313721633555246142587482700641781836005501387677455593\\ 1578483285863884486949805462052104291419845570558513443720606455732\\ 3165937735931605786380378378018264857422432758696743477636091751483\\ 2673105953482929270180111281652263111505547081990876835247606662936\\ 93562405279021538\#2,\] \[4[4]_{1} = 4[3]_{4} = 4[3][3][3][3],\] \[4[4]_{n} = 4[4]_{n-1}[4]_{1} = 4[4]_{n-1}[3]...[3], ext{with \(4[4]_{n-1}\) [3]'s and \(n \geq {2}\)}.\]
|