or, equivalently: Note that c is the side opposite of angle γ, and that a and b are the two sides enclosing γ. All three of the identities above say the same thing; they are listed separately only because in solving triangles with three given sides, one may apply the identity three times with the roles of the three sides permuted. The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if the angle γ is a right angle (of measure 90° or π/2 radians), then cos(γ) = 0, and thus the law of cosines reduces to which is the Pythagorean theorem.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dcterms:subject | |
dbkwik:math/proper...iPageUsesTemplate | |
abstract |
|