About: Conjugate pair   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

Particularly in the realm of complex numbers and irrational numbers, and more specifically when speaking of the roots of polynomials, a conjugate pair is a pair of numbers whose product is an expression of real integers and/or including variables. A complex number example: , a product of 13 An irrational example: , a product of 1. Or: , a product of -25. Often times, in solving for the roots of a polynomial, some solutions may be arrived at in conjugate pairs. If the coefficients of a polynomial are all real, for example, any non-real root will have a conjugate pair.

AttributesValues
rdfs:label
  • Conjugate pair
rdfs:comment
  • Particularly in the realm of complex numbers and irrational numbers, and more specifically when speaking of the roots of polynomials, a conjugate pair is a pair of numbers whose product is an expression of real integers and/or including variables. A complex number example: , a product of 13 An irrational example: , a product of 1. Or: , a product of -25. Often times, in solving for the roots of a polynomial, some solutions may be arrived at in conjugate pairs. If the coefficients of a polynomial are all real, for example, any non-real root will have a conjugate pair.
dcterms:subject
abstract
  • Particularly in the realm of complex numbers and irrational numbers, and more specifically when speaking of the roots of polynomials, a conjugate pair is a pair of numbers whose product is an expression of real integers and/or including variables. A complex number example: , a product of 13 An irrational example: , a product of 1. Or: , a product of -25. Often times, in solving for the roots of a polynomial, some solutions may be arrived at in conjugate pairs. If the coefficients of a polynomial are all real, for example, any non-real root will have a conjugate pair. , has the conjugate pair roots: and If the coefficients of a polynomial are all rational, any irrational root will have a conjugate pair. , has the conjugate pair roots: and
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software