About: Asthenosphere   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The asthenosphere is a portion of the upper mantle just below the lithosphere that is involved in plate movements and isostatic adjustments. In spite of its heat, pressures keep it plastic, and it has a relatively low density. Seismic waves pass relatively slowly through the asthenosphere, compared to the overlying lithospheric mantle, thus it has been called the low-velocity zone. This was the observation that originally alerted seismologists to its presence and gave some information about its physical properties, as the speed of seismic waves decreases with decreasing rigidity.

AttributesValues
rdfs:label
  • Asthenosphere
rdfs:comment
  • The asthenosphere is a portion of the upper mantle just below the lithosphere that is involved in plate movements and isostatic adjustments. In spite of its heat, pressures keep it plastic, and it has a relatively low density. Seismic waves pass relatively slowly through the asthenosphere, compared to the overlying lithospheric mantle, thus it has been called the low-velocity zone. This was the observation that originally alerted seismologists to its presence and gave some information about its physical properties, as the speed of seismic waves decreases with decreasing rigidity.
sameAs
dcterms:subject
dbkwik:gravity/pro...iPageUsesTemplate
abstract
  • The asthenosphere is a portion of the upper mantle just below the lithosphere that is involved in plate movements and isostatic adjustments. In spite of its heat, pressures keep it plastic, and it has a relatively low density. Seismic waves pass relatively slowly through the asthenosphere, compared to the overlying lithospheric mantle, thus it has been called the low-velocity zone. This was the observation that originally alerted seismologists to its presence and gave some information about its physical properties, as the speed of seismic waves decreases with decreasing rigidity. Under the thin oceanic plates the asthenosphere is usually much closer to the seafloor surface, and at mid-ocean ridges it rises to within a few kilometers of the ocean floor. The upper part of the asthenosphere is believed to be the zone upon which the great rigid and brittle lithospheric plates of the Earth's crust move about. Due to the temperature and pressure conditions in the asthenosphere, rock becomes ductile, moving at rates of deformation measured in cm/yr over lineal distances eventually measuring thousands of kilometers. In this way, it flows like a convection current, radiating heat outward from the Earth's interior. Above the asthenosphere, at the same rate of deformation, rock behaves elastically and, being brittle, can break, causing faults. The rigid lithosphere is thought to "float" or move about on the slowly flowing asthenosphere, creating the movement of crustal plates described by Plate tectonics
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software