The Bisuperior Grand Hugequaxul is equal to ((...((200![200(1)200(1)200(1)200(1)200,200,200])![200(1)200(1)200(1)200(1)200,200,200])...)![200(1)200(1)200(1)200(1)200,200,200])![200(1)200(1)200(1)200(1)200,200,200] (with Bisuperior Hugequaxul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.
Attributes | Values |
---|
rdfs:label
| - Bisuperior Grand Hugequaxul
|
rdfs:comment
| - The Bisuperior Grand Hugequaxul is equal to ((...((200![200(1)200(1)200(1)200(1)200,200,200])![200(1)200(1)200(1)200(1)200,200,200])...)![200(1)200(1)200(1)200(1)200,200,200])![200(1)200(1)200(1)200(1)200,200,200] (with Bisuperior Hugequaxul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.
|
dcterms:subject
| |
dbkwik:googology/p...iPageUsesTemplate
| |
abstract
| - The Bisuperior Grand Hugequaxul is equal to ((...((200![200(1)200(1)200(1)200(1)200,200,200])![200(1)200(1)200(1)200(1)200,200,200])...)![200(1)200(1)200(1)200(1)200,200,200])![200(1)200(1)200(1)200(1)200,200,200] (with Bisuperior Hugequaxul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.
|