About: Church-Kleene ordinal   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

An ordinal is always recursive iff it is less than another recursive ordinal, so the Church-Kleene ordinal is also the supremum of all recursive ordinals. It is a limit ordinal, since the successor of a recursive ordinal is also recursive. Since every computable well-ordering can be identified by a distinct Turing machine, of which there are countably many, \(\omega_1^ ext{CK}\) is also countable.

AttributesValues
rdfs:label
  • Church-Kleene ordinal
rdfs:comment
  • An ordinal is always recursive iff it is less than another recursive ordinal, so the Church-Kleene ordinal is also the supremum of all recursive ordinals. It is a limit ordinal, since the successor of a recursive ordinal is also recursive. Since every computable well-ordering can be identified by a distinct Turing machine, of which there are countably many, \(\omega_1^ ext{CK}\) is also countable.
dcterms:subject
dbkwik:googology/p...iPageUsesTemplate
abstract
  • An ordinal is always recursive iff it is less than another recursive ordinal, so the Church-Kleene ordinal is also the supremum of all recursive ordinals. It is a limit ordinal, since the successor of a recursive ordinal is also recursive. Since every computable well-ordering can be identified by a distinct Turing machine, of which there are countably many, \(\omega_1^ ext{CK}\) is also countable.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software