About: Alternating factorial   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The alternating factorial of a number n is \(\sum^n_{i = 1} (-1)^{n - i} \cdot i!\), or the alternating sum of all the factorials up to n. For example, the alternating factorial of 5 is \(1! - 2! + 3! - 4! + 5!=101\).

AttributesValues
rdfs:label
  • Alternating factorial
rdfs:comment
  • The alternating factorial of a number n is \(\sum^n_{i = 1} (-1)^{n - i} \cdot i!\), or the alternating sum of all the factorials up to n. For example, the alternating factorial of 5 is \(1! - 2! + 3! - 4! + 5!=101\).
sameAs
dcterms:subject
dbkwik:googology/p...iPageUsesTemplate
abstract
  • The alternating factorial of a number n is \(\sum^n_{i = 1} (-1)^{n - i} \cdot i!\), or the alternating sum of all the factorials up to n. For example, the alternating factorial of 5 is \(1! - 2! + 3! - 4! + 5!=101\).
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software