About: Pólya conjecture   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The Pólya conjecture is a disproven conjecture in number theory. It involves the Liouville function \(\lambda(n)\), defined as +1 if \(n\) has an even number of prime factors and -1 if \(n\) has an odd number of prime factors, counting multiplicity. The conjecture states that for all \(n > 1\) the summatory Liouville function \(L(n) = \sum_{i = 1}^{n} \lambda(i)\) is always non-positive.

AttributesValues
rdfs:label
  • Pólya conjecture
rdfs:comment
  • The Pólya conjecture is a disproven conjecture in number theory. It involves the Liouville function \(\lambda(n)\), defined as +1 if \(n\) has an even number of prime factors and -1 if \(n\) has an odd number of prime factors, counting multiplicity. The conjecture states that for all \(n > 1\) the summatory Liouville function \(L(n) = \sum_{i = 1}^{n} \lambda(i)\) is always non-positive.
sameAs
dcterms:subject
abstract
  • The Pólya conjecture is a disproven conjecture in number theory. It involves the Liouville function \(\lambda(n)\), defined as +1 if \(n\) has an even number of prime factors and -1 if \(n\) has an odd number of prime factors, counting multiplicity. The conjecture states that for all \(n > 1\) the summatory Liouville function \(L(n) = \sum_{i = 1}^{n} \lambda(i)\) is always non-positive. This can be explained visually as follows: Cedric and Royce are standing side by side. At time \(n\), Cedric takes a step forward if \(n\) has an even number of prime factors, and Royce steps forward if \(n\) has an odd number of prime factors. The Pólya conjecture is equivalent to the statement that Royce will always be ahead of Cedric after the starting time. C. B. Haselgrove disproved the conjecture in 1958 by showing that the sum becomes positive at a number \(n\) estimated at around 1.845 × 10361. Tanaka found the smallest counterexample in 1980, \(L(906180359) = 1\). Defining a "crossover" as a point when \(L(n) = 1\) and \(L(n - 1) = 0\), larger crossovers have been found. It is unknown whether there are infinitely many of them.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software