abstract
| - Telerobotic development is the heart of the Avalon concept of lunar and planetary settlement and it is premised on the simple issue of economics. As we’ve discussed many times, traditional colonial economic models do not, in the near term, work in space because the extreme costs of transportation make export for profit impractical. To date, the preliminary exploration of space has been rationalized on the premise of science and national prestige and paid for predominantly by public money. This is simply not a sustainable source of support at the scale and length of time true colonization demands. Even the largest superpower nations have proven hopelessly inconsistent in their support of their space programs and barely manage to sustain the most rudimentary exploration programs. We may marvel at the feats of the First Space Age but they are relatively insignificant in scale compared to the tasks of colonization. It was for this reason that, with the original TMP, Marshall Savage proposed the cultivation of a new nation-scale society with the strong cultural focus on space necessary to garner support for sustained colonization efforts. But there is just so much one can do in this respect. The collective communities of TMP – the many marine settlements of Aquarius in particular – may eventually come to rival in scale, population, and resources major nations of Europe, but if even the largest super-power nations cannot effectively sustain mere rudimentary exploration, this new society will need to make the absolute most of its resources to sustain efforts toward colonization. It will likely favor the development activities of Asgard for this early effort since the resources of asteroids will long be easier to access than those of lunar and planetary surfaces – though lunar locations are much better in this respect. Lunar and planetary settlement will need to be spearheaded by people with a personal desire to move to those locations. This necessarily small community will need to leverage their capability and resources in ways the space agencies of super-power nations have, to date, never even imagined possible. Robotics is the key to that because of one key virtue: time. Robots may not be equal in physical capability to human beings for a long time. But in space they buy time by their lack of need for life support and time is far cheaper than manned space flight. Telerobotics is a somewhat nascent technology today – a solution in search of a problem, some would say. But, in combination with new industrial technologies, it offers the compelling prospect of leveraging an initially small investment in lunar and planetary facilities into a local industrial infrastructure of unlimited scale. In effect, it can reduce the initial development of a settlement to something attainable for a relative small group or even a hobby project for one to a few particularly wealthy and technically sophisticated individuals. The best model train layout ever. The one you can eventually move into. And one of the great virtues of telerobotic settlement is that one doesn’t need the grandiose facilities of a national space agency to pursue development of the systems and technology needed. Today, it is entirely feasible to create a working prototype telerobotic outpost in any of countless relatively remote locations on Earth and start with off-the-shelf technology and hobbyist robotics products. In addition, it is a relatively cheap and easy way to pursue the interior design and systems development for the eventual excavated manned habitats and – because their designs are essentially all interior - demonstrate them in everything from disused mining facilities to warehouses and aircraft hangars. The potential for casual and formal participation in this development is great and spans a broad and global demographic. This is something most any space advocacy group today is capable of pursuing – and yet it remains something they have almost entirely overlooked to date. This is also technology with a very direct dividend on Earth, feeding back into commercial industrial automation and materials processing, mining, construction, consumer and entertainment electronics and robotics, and the development of open source manufacturing. One could potentially cultivate any number of businesses from even a ‘hobby’ of space settlement development. This is much more potential for tech transfer than common to manned space activity, since manned space flight demands far more specialized technology. Even the technology used for the eventual human habitats started by telerobotic outposts have direct terrestrial architecture applications. As we’ve noted elsewhere, these first habitats would be based on excavation and the employ of modular retrofit component systems derived from those used for terrestrial building applications. These technologies have direct application to terrestrial prefab architecture and compact industrial facilities. How much of the technology of Apollo can we say has transferred to the very design of our own homes today?
|