rdfs:comment
| - Also known as orange dwarfs, these stars appear orange in color, but, like most stars, are white. They are similar to Sol in many respects: similar radiation output and similar behavior. Luminosity of such stars is roughly between 10% and 50% of that generated by our sun, their light output spectrum is ample across the visible spectra, but the blue component is weaker than that of Sol. Unlike M - type stars, they tend not to give off such powerful flares and are expected to have sunspots similar in size to those of our sun.
|
abstract
| - Also known as orange dwarfs, these stars appear orange in color, but, like most stars, are white. They are similar to Sol in many respects: similar radiation output and similar behavior. Luminosity of such stars is roughly between 10% and 50% of that generated by our sun, their light output spectrum is ample across the visible spectra, but the blue component is weaker than that of Sol. Unlike M - type stars, they tend not to give off such powerful flares and are expected to have sunspots similar in size to those of our sun. Solar wind is present, but it's not so powerful; ultraviolet output is lower than that of Sol, which means these stellar objects have exponentially longer lives than hotter, more brilliant stars. Over the course of billions of years they change very little in brightness, providing potentially more enduring stable habitable zones. As a result, one might consider these stars better candidates for colonization than G - type stars like our sun, Sol. The star has an estimated Habitable Zone comparable to an orbital placed at a distance approximately equal to an area between Mercury's and Venus's orbits around Sol.
|