The Feferman–Schütte ordinal \(\Gamma_0\) (pronounced "gamma-zero") is the first ordinal inaccessible through the Veblen hierarchy. Formally, it is the first fixed point of \(\alpha \mapsto \varphi_{\alpha}(0)\), visualized as \(\varphi_{\varphi_{\varphi_{._{._..}.}(0)}(0)}(0)\). The Feferman–Schütte ordinal is significant as the proof-theoretic ordinal of ATR0 (arithmetical transfinite recursion, a subsystem of second-order arithmetic). It is \(\varphi(1,0,0)\) using the extended Veblen function, and \( heta(\Omega,0)\) using the Feferman theta function.
Attributes | Values |
---|
rdfs:label
| |
rdfs:comment
| - The Feferman–Schütte ordinal \(\Gamma_0\) (pronounced "gamma-zero") is the first ordinal inaccessible through the Veblen hierarchy. Formally, it is the first fixed point of \(\alpha \mapsto \varphi_{\alpha}(0)\), visualized as \(\varphi_{\varphi_{\varphi_{._{._..}.}(0)}(0)}(0)\). The Feferman–Schütte ordinal is significant as the proof-theoretic ordinal of ATR0 (arithmetical transfinite recursion, a subsystem of second-order arithmetic). It is \(\varphi(1,0,0)\) using the extended Veblen function, and \( heta(\Omega,0)\) using the Feferman theta function.
|
sameAs
| |
dcterms:subject
| |
dbkwik:googology/p...iPageUsesTemplate
| |
abstract
| - The Feferman–Schütte ordinal \(\Gamma_0\) (pronounced "gamma-zero") is the first ordinal inaccessible through the Veblen hierarchy. Formally, it is the first fixed point of \(\alpha \mapsto \varphi_{\alpha}(0)\), visualized as \(\varphi_{\varphi_{\varphi_{._{._..}.}(0)}(0)}(0)\). The Feferman–Schütte ordinal is significant as the proof-theoretic ordinal of ATR0 (arithmetical transfinite recursion, a subsystem of second-order arithmetic). It is \(\varphi(1,0,0)\) using the extended Veblen function, and \( heta(\Omega,0)\) using the Feferman theta function.
|