Sensors are distributed across the globe leading to an avalanche of data about our environment. The rapid development and deployment of sensor technology involves many different types of sensors, both remote and in situ, with such diverse capabilities as range, modality, and maneuverability. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the semantic sensor Web (SSW) proposes that sensor data be annotated with semantic metadata that will both increas
| Attributes | Values |
|---|
| rdfs:label
| |
| rdfs:comment
| - Sensors are distributed across the globe leading to an avalanche of data about our environment. The rapid development and deployment of sensor technology involves many different types of sensors, both remote and in situ, with such diverse capabilities as range, modality, and maneuverability. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the semantic sensor Web (SSW) proposes that sensor data be annotated with semantic metadata that will both increas
|
| sameAs
| |
| dcterms:subject
| |
| dbkwik:freespeech/...iPageUsesTemplate
| |
| abstract
| - Sensors are distributed across the globe leading to an avalanche of data about our environment. The rapid development and deployment of sensor technology involves many different types of sensors, both remote and in situ, with such diverse capabilities as range, modality, and maneuverability. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the semantic sensor Web (SSW) proposes that sensor data be annotated with semantic metadata that will both increase interoperability and provide contextual information essential for situational knowledge. In particular, the SSW presents an approach for annotating sensor data with spatial, temporal, and thematic semantic metadata. This approach leverages current standardization efforts of the Open Geospatial Consortium (OGC) [1] and Semantic Web Activity of the World Wide Web Consortium (W3C) [2] to provide enhanced descriptions and meaning to sensor data.
|