About: Polygonal number   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

In mathematics, a polygonal number is a number represented as dots or pebbles arrayed in the shape of a polygon. The dots were thought of as alphas (units). These are one type of figurate numbers. The number 10, for example, can be arranged as a triangle (see triangular number): {| | align="center" | Image:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svg |} But 10 cannot be arranged as a square. The number 9, on the other hand, can be (see square number): {| {| Square numbers

AttributesValues
rdfs:label
  • Polygonal number
rdfs:comment
  • In mathematics, a polygonal number is a number represented as dots or pebbles arrayed in the shape of a polygon. The dots were thought of as alphas (units). These are one type of figurate numbers. The number 10, for example, can be arranged as a triangle (see triangular number): {| | align="center" | Image:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svg |} But 10 cannot be arranged as a square. The number 9, on the other hand, can be (see square number): {| {| Square numbers
sameAs
dcterms:subject
dbkwik:math/proper...iPageUsesTemplate
Title
  • Polygonal Numbers on the Ulam Spiral grid
ID
  • YOiZ459lZ7A
abstract
  • In mathematics, a polygonal number is a number represented as dots or pebbles arrayed in the shape of a polygon. The dots were thought of as alphas (units). These are one type of figurate numbers. The number 10, for example, can be arranged as a triangle (see triangular number): {| | align="center" | Image:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svg |} But 10 cannot be arranged as a square. The number 9, on the other hand, can be (see square number): {| | align="center" | Image:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svg |} Some numbers, like 36, can be arranged both as a square and as a triangle (see triangular square number): {| |- align="center" valign="bottom" |Image:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svgImage:GrayDot.svg | |Image:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svgImage:GrayDotX.svg |} By convention, 1 is the first polygonal number for any number of sides. The rule for enlarging the polygon to the next size is to extend two adjacent arms by one point and to then add the required extra sides between those points. In the following diagrams, each extra layer is shown as in red. Triangular numbers Square numbers Polygons with higher numbers of sides, such as pentagons and hexagons, can also be constructed according to this rule, although the dots will no longer form a regular lattice like above. For example, the first few hexagonal numbers are: If s is the number of sides in a polygon, the formula for the nth s-gonal number is . The On-Line Encyclopedia of Integer Sequences eschews terms using Greek prefixes (e.g., "octagonal") in favor of terms using numerals (i.e., "8-gonal"). For a given s-gonal number x, one can find n by
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software