About: Raman scattering   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

Raman scattering or the Raman effect (pronounced /ˈrɑːmən/) is the inelastic scattering of a photon. Discovered by Sir Chandrasekhara Venkata Raman in liquids and by Grigory Landsberg and Leonid Mandelstam in crystals.

AttributesValues
rdfs:label
  • Raman scattering
rdfs:comment
  • Raman scattering or the Raman effect (pronounced /ˈrɑːmən/) is the inelastic scattering of a photon. Discovered by Sir Chandrasekhara Venkata Raman in liquids and by Grigory Landsberg and Leonid Mandelstam in crystals.
  • Raman scattering or the Raman effect (pronounced: —) is the inelastic scattering of a photon. Discovered By Dr. C.V. Raman in liquids and by Grigory Landsberg and Leonid Mandelstam in crystals. When light is scattered from an atom or molecule, most photons are elastically scattered (Rayleigh scattering). The scattered photons have the same energy (frequency) and wavelength as the incident photons. However, a small fraction of the scattered light (approximately 1 in 10 million photons) is scattered by an excitation, with the scattered photons having a frequency different from, and usually lower than, the frequency of the incident photons. In a gas, Raman scattering can occur with a change in vibrational, rotational or electronic energy of a molecule (see energy level). Chemists are concerne
sameAs
dcterms:subject
dbkwik:physics/pro...iPageUsesTemplate
abstract
  • Raman scattering or the Raman effect (pronounced: —) is the inelastic scattering of a photon. Discovered By Dr. C.V. Raman in liquids and by Grigory Landsberg and Leonid Mandelstam in crystals. When light is scattered from an atom or molecule, most photons are elastically scattered (Rayleigh scattering). The scattered photons have the same energy (frequency) and wavelength as the incident photons. However, a small fraction of the scattered light (approximately 1 in 10 million photons) is scattered by an excitation, with the scattered photons having a frequency different from, and usually lower than, the frequency of the incident photons. In a gas, Raman scattering can occur with a change in vibrational, rotational or electronic energy of a molecule (see energy level). Chemists are concerned primarily with the vibrational Raman effect. In 1922, Indian physicist Chandrasekhara Venkata Raman published his work on the "Molecular Diffraction of Light," the first of a series of investigations with his collaborators which ultimately led to his discovery (on 28 February 1928) of the radiation effect which bears his name. The Raman effect was first reported by C. V. Raman and K. S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam, in 1928. Raman received the Nobel Prize in 1930 for his work on the scattering of light. In 1998 the Raman Effect was designated an ACS National Historical Chemical Landmark in recognition of its significance as a tool for analyzing the composition of liquids, gases, and solids.
  • Raman scattering or the Raman effect (pronounced /ˈrɑːmən/) is the inelastic scattering of a photon. Discovered by Sir Chandrasekhara Venkata Raman in liquids and by Grigory Landsberg and Leonid Mandelstam in crystals. When light is scattered from an atom or molecule, most photons are elastically scattered (Rayleigh scattering), such that the scattered photons have the same energy (frequency) and wavelength as the incident photons. However, a small fraction of the scattered light (approximately 1 in 10 million photons) is scattered by an excitation, with the scattered photons having a frequency different from, and usually lower than, the frequency of the incident photons. In a gas, Raman scattering can occur with a change in vibrational, rotational or electronic energy of a molecule (see energy level). Chemists are concerned primarily with the vibrational Raman effect. In 1922, Indian physicist C. V. Raman published his work on the "Molecular Diffraction of Light," the first of a series of investigations with his collaborators which ultimately led to his discovery (on 28 February 1928) of the radiation effect which bears his name. The Raman effect was first reported by C. V. Raman and K. S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam, in 1928. Raman received the Nobel Prize in 1930 for his work on the scattering of light. In 1998 the Raman Effect was designated an ACS National Historical Chemical Landmark in recognition of its significance as a tool for analyzing the composition of liquids, gases, and solids.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software