About: In-space propulsion technologies   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

Proposed in-space propulsion technologies describe the propulsion technologies that could meet future space science and exploration needs. These propulsion technologies are intended to provide effective exploration of our Solar System and will permit mission designers to plan missions to “fly anytime, anywhere, and complete a host of science objectives at the destinations” and with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies, the question of which technologies are “best” for future missions is a difficult one. A portfolio of propulsion technologies should be developed to provide optimum solutions for a diverse set of missions and destinations.

AttributesValues
rdfs:label
  • In-space propulsion technologies
rdfs:comment
  • Proposed in-space propulsion technologies describe the propulsion technologies that could meet future space science and exploration needs. These propulsion technologies are intended to provide effective exploration of our Solar System and will permit mission designers to plan missions to “fly anytime, anywhere, and complete a host of science objectives at the destinations” and with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies, the question of which technologies are “best” for future missions is a difficult one. A portfolio of propulsion technologies should be developed to provide optimum solutions for a diverse set of missions and destinations.
sameAs
dcterms:subject
dbkwik:nasa/proper...iPageUsesTemplate
abstract
  • Proposed in-space propulsion technologies describe the propulsion technologies that could meet future space science and exploration needs. These propulsion technologies are intended to provide effective exploration of our Solar System and will permit mission designers to plan missions to “fly anytime, anywhere, and complete a host of science objectives at the destinations” and with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies, the question of which technologies are “best” for future missions is a difficult one. A portfolio of propulsion technologies should be developed to provide optimum solutions for a diverse set of missions and destinations. In-space propulsion begins where the upper stage of the launch vehicle leaves off; performing the functions of primary propulsion, reaction control, station keeping, precision pointing, and orbital maneuvering. The main engines used in space provide the primary propulsive force for orbit transfer, planetary trajectories and extra planetary landing and ascent. The reaction control and orbital maneuvering systems provide the propulsive force for orbit maintenance, position control, station keeping, and spacecraft attitude control.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software