About: Experimental basis of Special Relativity/Tests of Relativistic Kinematics   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

Kinematics is basically the study of how energy and momentum conservation laws constrain and affect physical interactions. The two basic predictions of SR in this regard are that massive objects will have a limiting velocity of c (the speed of light), and that their “relativistic mass” will increase with velocity. This latter property implies that the newtonian equations for conservation of energy and momentum will be violated by enormous factors for objects with velocities approaching c, and that the corresponding formulas of SR must be used. This has become so obvious in particle experiments that few experiments test the SR equations, and virtually all particle experiments rely upon SR in their analysis. The exceptions are primarily early experiments measuring energy as a function of vel

AttributesValues
rdfs:label
  • Experimental basis of Special Relativity/Tests of Relativistic Kinematics
rdfs:comment
  • Kinematics is basically the study of how energy and momentum conservation laws constrain and affect physical interactions. The two basic predictions of SR in this regard are that massive objects will have a limiting velocity of c (the speed of light), and that their “relativistic mass” will increase with velocity. This latter property implies that the newtonian equations for conservation of energy and momentum will be violated by enormous factors for objects with velocities approaching c, and that the corresponding formulas of SR must be used. This has become so obvious in particle experiments that few experiments test the SR equations, and virtually all particle experiments rely upon SR in their analysis. The exceptions are primarily early experiments measuring energy as a function of vel
dcterms:subject
abstract
  • Kinematics is basically the study of how energy and momentum conservation laws constrain and affect physical interactions. The two basic predictions of SR in this regard are that massive objects will have a limiting velocity of c (the speed of light), and that their “relativistic mass” will increase with velocity. This latter property implies that the newtonian equations for conservation of energy and momentum will be violated by enormous factors for objects with velocities approaching c, and that the corresponding formulas of SR must be used. This has become so obvious in particle experiments that few experiments test the SR equations, and virtually all particle experiments rely upon SR in their analysis. The exceptions are primarily early experiments measuring energy as a function of velocity for electrons and protons. Note that the nomenclature has changed over the past century, and current literature focusses more on rest mass than relativistic mass because rest mass is an invariant property of an object. In this article, use of the word "mass" means rest mass. See also this FAQ page.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software