rdfs:comment
| - Following conversations in 1913 with Niels Bohr, a fellow worker in Ernest Rutherford's Cavendish laboratory, Moseley had become interested in the Bohr model of the atom, in which the spectra of light emitted by atoms is proportional to the square of Z, the charge on their nucleus (which had just been discovered two years before). Bohr's formula had worked well to give the previously known Rydberg formula for the hydrogen atom, but it was not known then if it would also give spectra for other elements with higher Z numbers, or even precisely what the Z numbers (in terms of charge) for heavier elements were. In particular, only two years before Rutherford in 1911 had postulated that Z for gold atoms might be about about half of its atomic weight, and only shortly afterward, Antonius van den
|
abstract
| - Following conversations in 1913 with Niels Bohr, a fellow worker in Ernest Rutherford's Cavendish laboratory, Moseley had become interested in the Bohr model of the atom, in which the spectra of light emitted by atoms is proportional to the square of Z, the charge on their nucleus (which had just been discovered two years before). Bohr's formula had worked well to give the previously known Rydberg formula for the hydrogen atom, but it was not known then if it would also give spectra for other elements with higher Z numbers, or even precisely what the Z numbers (in terms of charge) for heavier elements were. In particular, only two years before Rutherford in 1911 had postulated that Z for gold atoms might be about about half of its atomic weight, and only shortly afterward, Antonius van den Broek had made the bold suggestion that Z was not half of the atomic weight for elements, but instead was exactly equal to the element's atomic number, or place in the periodic table. This position in the table was not known to have any physical significance up to that time, except as a way to order elements in a particular sequence so that their chemical properties would match up. The ordering of atoms in the periodic table did tend to be according to atomic weights, but there were a few famous "reversed" cases where the periodic table demanded that an element with a higher atomic weight (such as cobalt at weight 58.9) nevertheless be placed at a lower position (Z=27), before an element like nickel (with a lower atomic weight of 58.7), which the table demanded take the higher position at Z= 28. Moseley inquired if Bohr thought that the emission spectra of cobalt and nickel would follow their ordering by weight or by position (atomic number, Z), and Bohr said it would certainly be by Z. Moseley's reply was "We shall see!" Since the spectal emissions for high Z elements would be in the soft X-ray range (easily absorbed in air), Moseley was required to use vacuum tube techniques to measure them. Using x-ray diffraction techniques in 1913-1914, Moseley found that the most intense short-wavelength line in the x-ray spectrum of a particular element was indeed related to the element's periodic table atomic number, Z. This line was known as the K-alpha line. Following Bohr's lead, Moseley found that this relationship could be expressed by a simple formula, later called Moseley's Law. where: is the frequency of the main or K x-ray emission line and are constants that depend on the type of line For example, the values for and are the same for all lines (in Siegbahn notation), so the formula can be rewritten thus: Hz Moseley himself chose to show this without per se, which instead was given by Moseley as a pure constant number in the standard Rydberg style, as simply 3/4 (that is, 1- 1/4) of the fundamental Rydberg frequency (3.29*1015 Hz) for K-alpha lines, and (again) for L-alpha lines according to the Rydberg formula, where must be 1/4 - 1/9 = 5/36 times the Rydberg frequency; this also was the way Moseley chose to write it. Moseley's was given as a general empiric constant to fit either K-alpha or L-alpha transition lines (the latter being weaker-intensity and lower frequency lines found in all X-ray element spectra, and in which case the additional numerical factor to modify Z is much higher). Moseley found the entire term was (Z - 7.4)2 for L-alpha transitions, and again his fit to data was good, but not as close as for K-alpha lines where the value of was found to be 1. Thus, Moseley's two given formulae for K-alpha and L-alpha lines, in his original semi-Rydberg style notion, (squaring both sides for clarity), are: Hz Hz
|