About: Q-factorial   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The q-factorial is the q-analog of the factorial function. It is written \([n]_q!\) or \(\mathrm{faq}(n,q)\) and is defined as \[[n]_q! = \prod^{n - 1}_{i = 0} \left( extstyle\sum^{i}_{j = 0} q^jight) = q^0 \cdot \left(q^0 + q^1ight) \cdot \left(q^0 + q^1 + q^2ight) \cdot \ldots \cdot \left(q^0 + q^1 + \ldots + q^{n - 1}ight)\] As with all q-analogs, letting \(q = 1\) produces the ordinary factorial. Based on the q-factorial, we can define the q-exponential function: \[e^x_q = \sum_{i = 0}^{\infty} \frac{x^i}{[i]_q!} = \frac{1}{[0]_q!} + \frac{x}{[1]_q!} + \frac{x^2}{[2]_q!} + \frac{x^3}{[3]_q!} + \cdots\]

AttributesValues
rdfs:label
  • Q-factorial
rdfs:comment
  • The q-factorial is the q-analog of the factorial function. It is written \([n]_q!\) or \(\mathrm{faq}(n,q)\) and is defined as \[[n]_q! = \prod^{n - 1}_{i = 0} \left( extstyle\sum^{i}_{j = 0} q^jight) = q^0 \cdot \left(q^0 + q^1ight) \cdot \left(q^0 + q^1 + q^2ight) \cdot \ldots \cdot \left(q^0 + q^1 + \ldots + q^{n - 1}ight)\] As with all q-analogs, letting \(q = 1\) produces the ordinary factorial. Based on the q-factorial, we can define the q-exponential function: \[e^x_q = \sum_{i = 0}^{\infty} \frac{x^i}{[i]_q!} = \frac{1}{[0]_q!} + \frac{x}{[1]_q!} + \frac{x^2}{[2]_q!} + \frac{x^3}{[3]_q!} + \cdots\]
dcterms:subject
dbkwik:googology/p...iPageUsesTemplate
abstract
  • The q-factorial is the q-analog of the factorial function. It is written \([n]_q!\) or \(\mathrm{faq}(n,q)\) and is defined as \[[n]_q! = \prod^{n - 1}_{i = 0} \left( extstyle\sum^{i}_{j = 0} q^jight) = q^0 \cdot \left(q^0 + q^1ight) \cdot \left(q^0 + q^1 + q^2ight) \cdot \ldots \cdot \left(q^0 + q^1 + \ldots + q^{n - 1}ight)\] As with all q-analogs, letting \(q = 1\) produces the ordinary factorial. Based on the q-factorial, we can define the q-exponential function: \[e^x_q = \sum_{i = 0}^{\infty} \frac{x^i}{[i]_q!} = \frac{1}{[0]_q!} + \frac{x}{[1]_q!} + \frac{x^2}{[2]_q!} + \frac{x^3}{[3]_q!} + \cdots\] as well as q-trigonometric functions \(\sin_q x = \frac{e^{ix}_q - e^{-ix}_q}{2i}\), \(\cos_q x = \frac{e^x_q + e^{-x}_q}{2}\), etc.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software