| rdfs:comment
| - Алгебраическая функция — функция, которая в окрестности каждой точки области определения может быть задана неявно с помощью алгебраического уравнения. Более точное определение: Функция называется алгебраической в точке , если существует окрестность точки , в которой верно тождество где есть многочлен от переменной. Функция называется алгебраической, если она является алгебраической в каждой точке области определения. Например, функция действительного переменного является алгебраической на интервале в поле действительных чисел, так как она удовлетворяет уравнению
|
| abstract
| - Алгебраическая функция — функция, которая в окрестности каждой точки области определения может быть задана неявно с помощью алгебраического уравнения. Более точное определение: Функция называется алгебраической в точке , если существует окрестность точки , в которой верно тождество где есть многочлен от переменной. Функция называется алгебраической, если она является алгебраической в каждой точке области определения. Например, функция действительного переменного является алгебраической на интервале в поле действительных чисел, так как она удовлетворяет уравнению Существует аналитическое продолжение функции на комплексную плоскость, с вырезанным отрезком или с двумя вырезанными лучами и . В этой области полученная функция компл'ексного переменного является алгебраической и аналитической. Известно, что если функция является алгебраической в точке, то она является и аналитической в данной точке. Обратное неверно. Функции, являющиеся аналитическими, но не являющиеся алгебраическими, называются трансцендентными.
|