About: Grand Megision   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The Grand Megision is equal to M(M(3,3),3) = M(Grand Mega,3), using the Hyper-Moser notation M(m,n) for m inside n+2-gon in Steinhaus-Moser notation. The term was coined by Aarex Tiaokhiao. In the up-arrow notation, Grand Megision is between \(3 \uparrow\uparrow\uparrow\uparrow 3\) and \(3 \uparrow\uparrow\uparrow\uparrow 4\).

AttributesValues
rdfs:label
  • Grand Megision
rdfs:comment
  • The Grand Megision is equal to M(M(3,3),3) = M(Grand Mega,3), using the Hyper-Moser notation M(m,n) for m inside n+2-gon in Steinhaus-Moser notation. The term was coined by Aarex Tiaokhiao. In the up-arrow notation, Grand Megision is between \(3 \uparrow\uparrow\uparrow\uparrow 3\) and \(3 \uparrow\uparrow\uparrow\uparrow 4\).
dcterms:subject
dbkwik:googology/p...iPageUsesTemplate
abstract
  • The Grand Megision is equal to M(M(3,3),3) = M(Grand Mega,3), using the Hyper-Moser notation M(m,n) for m inside n+2-gon in Steinhaus-Moser notation. The term was coined by Aarex Tiaokhiao. In the up-arrow notation, Grand Megision is between \(3 \uparrow\uparrow\uparrow\uparrow 3\) and \(3 \uparrow\uparrow\uparrow\uparrow 4\).
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software