About: dbkwik:resource/kLwHIHjtoEFX9-NqUJSeyg==   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

AttributesValues
rdfs:label
  • ALICE измерил массы и энергии связи легких антиядер
rdfs:comment
  • thumb|700px|center|Рис. 1. Энерговыделение частицы на единицу длины траектории в зависимости от ее импульса (по данным время-проекционной камеры детектора ALICE). Слева — отрицательно заряженные частицы, справа — положительно. Каждая точка — отдельная прослеженная частица. Черные линии — теоретически ожидаемые зависимости для частиц разных типов. Изображение из статьи ALICE Collaboration, 2015. [http://arxiv.org/abs/1506.08951 Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at LHC energies] Результат, полученный коллаборацией ALICE для величины , таков:
dcterms:subject
dbkwik:ru.science/...iPageUsesTemplate
abstract
  • thumb|700px|center|Рис. 1. Энерговыделение частицы на единицу длины траектории в зависимости от ее импульса (по данным время-проекционной камеры детектора ALICE). Слева — отрицательно заряженные частицы, справа — положительно. Каждая точка — отдельная прослеженная частица. Черные линии — теоретически ожидаемые зависимости для частиц разных типов. Изображение из статьи ALICE Collaboration, 2015. [http://arxiv.org/abs/1506.08951 Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at LHC energies] Антивещество, и в особенности позитроны и антипротоны, уже давно известно физикам и используется в разнообразных экспериментах. Антипротоны, например, производились в больших количествах для американского протон-антипротонного коллайдера Тэватрон. В ЦЕРНе есть специальная установка — антипротонный замедлитель (AD) — которая поставляет поток медленных антипротонов для нужд сразу нескольких экспериментов с антипротонами и антиводородом (см.: В эксперименте ASACUSA заработала линия по производству антиводорода, «Элементы», 04.02.2014). Поскольку антипротоны стабильны — если их, конечно, изолировать от обычной материи, — с ними можно выполнять очень точные измерения. Например, совсем недавно церновский эксперимент BASE выяснил, что масса антипротона совпадает с массой протона с точностью лучше одной десятимиллиардной. Однако это всё касается только отдельных античастиц. Антиядра — связанные состояния антипротонов и антинейтронов — изучены гораздо хуже. Во-первых, известно их очень мало. Легчайшие антиядра, антидейтроны, впервые наблюдались ровно полвека назад. Антигелий-3 увидели в 1971 году. Известен также антитритон и антигелий-4, причем последний был открыт совсем недавно, в 2011 году. Во-вторых, рождаются антиядра очень редко. Для возникновения антиядра нужно, чтобы в столкновении не просто родилось несколько антинуклонов, а чтобы они вдобавок вылетели примерно в одном направлении и объединились друг с другом. В-третьих, замедлить и поймать в ловушку антиядра пока не удается, поэтому все измерения с ними приходится делать на лету. Из-за этих трудностей до сих пор не удавалось приступить к изучению «антиядерных сил» — сил взаимодействия между антинуклонами в антиядре. В принципе, теоретики считают, что в силу CPT-теоремы все общие свойства частиц и античастиц (массы, полные ширины распада и т. п.) должны совпадать. Это относится и к антиядрам, к их массам и энергиям связи. Однако любое теоретическое утверждение желательно проверить экспериментально; в конце концов, некоторые теоретики обсуждают гипотетическую возможность небольшого нарушения CPT-симметрии. На днях коллаборация ALICE опубликовала в журнале Nature Physics результаты рекордного по точности сравнения масс ядер дейтерия и гелия-3 и их же антиядер. Статистика антиядер была набрана во время короткого сеанса ядерных столкновений, который прошел на Большом адронном коллайдере в ноябре 2011 года. В типичном ядерном столкновении рождаются тысячи отдельных частиц, и среди них могут иногда встречаться антипротоны, антинейтроны и, в исключительных случаях, антиядра. Разобраться в этой мешанине очень сложно, но детектор ALICE, специально заточенный под изучения ядерных столкновений, с этой задачей справляется уверенно. Помогают ему в этом ключевые конструкционные элементы: большая время-проекционная камера, аккуратно восстанавливающая тысячи траекторий, и комбинированная система идентификации частиц. По ним измеряется импульс частицы и ее скорость, а значит, и масса. Тип частицы виден также по энерговыделению на единицу длины траектории, который хорошо измеряется время-проекционной камерой (рис. 1). Поскольку главной задачей исследования было сравнение масс ядер и антиядер (а точнее, сравнение отношений массы к модулю электрического заряда, μ = m/|z|), физики постарались избавиться от общих источников систематических погрешностей. Для этого при обработке данных измерялись не отдельно массы ядер и антиядер, а сразу, на уровне статистических распределений, разница между поведением частиц и античастиц. Это позволило устранить неточности восстановления траекторий, последствия неидеального выравнивания разных компонентов детектора и другие неизбежные погрешности «железа». После этого оставались инструментальные эффекты, связанные с неидеальным магнитным полем, которые могли по-разному влиять на частицы разных знаков заряда. Это опасный источник погрешностей — если его проигнорировать, может создаться ложное впечатление, что траектории ядер и антиядер закручиваются по-разному, а значит, их массы отличаются. Для этого в ходе набора статистики магнитное поле регулярно меняло полярность на противоположную. Наконец, все остаточные источники погрешностей были внимательно проанализированы, минимизированы и оценены численно. Благодаря этой кропотливой работе относительная систематическая погрешность результата не превышала одной тысячной. Результат, полученный коллаборацией ALICE для величины , таков: где первая погрешность статистическая, вторая — систематическая. Как видно, обе измеренные величины в пределах погрешности равны нулю, в полном согласии с CPT-теоремой. На рис. 2, слева, эти данные представлены графически и сопоставлены с данными старых, почти полувековой давности, экспериментов. Высокая точность результата позволила коллаборации ALICE сделать следующий шаг — вычислить энергию связи ядер и антиядер по их дефекту масс и проверить тем самым, меняются ли ядерные силы при переходе от ядер к антиядрам. Результаты здесь оказались такими (см. также рис. 2, справа): Точность, конечно, не слишком высока. Но тот факт, что энергия связи антиядер наконец-то стала доступна измерению и сравнению с ядрами, означает, что на наших глазах рождается новое направление исследований, которое можно условно назвать «антиядерной» физикой. В принципе, от коллайдерных экспериментов можно еще ждать некоторого улучшения точности, а также измерения энергии связи для антигелия-4. Однако рывок в точности произойдет лишь тогда, когда физики начнут получать медленные антиядра и удерживать их в ловушках. Когда это будет реализовано — неизвестно; на пути к этому придется преодолеть серьезные технические трудности.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software