About: dbkwik:resource/kh_Y2ilaxSy-zyJ_gCM9XQ==   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

AttributesValues
rdfs:label
  • Кристаллографическая группа
rdfs:comment
  • Кристаллографическая группа — дискретная группа движений -мерного евклидова пространства, имеющая ограниченную фундаментальную область.
  • Кристаллографическая группа - дискретная группа движений n-мерного евклидова пространства, имеющая ограниченную фундаментальную область. Две кристаллографические группы считаются эквивалентными, если они сопряжены в группе аффинных преобразований пространства евклидова пространства. Основные резульаты для многомерных кристаллографических групп были получены Бибербахом (Bieberbach), он в частности доказал: Группа линейных частей кристаллографической группы сохраняет решётку ; иными словами, в базисе решетки преобразования из записываются целочисленными матрицами.
dcterms:subject
dbkwik:ru.math/pro...iPageUsesTemplate
dbkwik:ru.science/...iPageUsesTemplate
abstract
  • Кристаллографическая группа — дискретная группа движений -мерного евклидова пространства, имеющая ограниченную фундаментальную область.
  • Кристаллографическая группа - дискретная группа движений n-мерного евклидова пространства, имеющая ограниченную фундаментальную область. Две кристаллографические группы считаются эквивалентными, если они сопряжены в группе аффинных преобразований пространства евклидова пространства. Происхождение теории кристаллографических групп связано с изучением симметрии орнаментов (n=2) и кристаллических структур (n=3). Классификация всех плоских (двумерных) и пространственных (трёхмерных) кристаллографических групп была получена в конце 19 в. Е. С. Фёдоровым и несколько позже А. Шёнфлисом (A. Schönflies). С точностью до эквивалентности имеется 17 плоских и 219 пространственных кристаллографических групп; если же рассматривать пространственные группы с точностью до сопряжённости при помощи аффинных преобразований, сохраняющих ориентацию, то их будет 230. Основные резульаты для многомерных кристаллографических групп были получены Бибербахом (Bieberbach), он в частности доказал: 1. * Всякая -мерная кристаллографическая группа содержит линейно независимых параллельных переносов; группа линейных частей преобразований (т.е. образ в ) конечна. 2. * Две кристаллографические группы эквивалентны тогда и только тогда, когда они изоморфны как абстрактные группы. 3. * При любом имеется лишь конечное число -мерных кристаллографических групп, рассматриваемых с точностью до эквивалентности (что является решением 18-й проблемы Гильберта). Теорема 1 позволяет дать следующее описание строения кристаллографических групп как абстрактных групп: Пусть - совокупность всех параллельных переносов, принадлежащих кристаллографической группе . Тогда - нормальная подгруппа конечного индекса, изоморфная и совпадающая со своим централизатором в . Наличие такой нормальной подгруппы в абстрактной группе является и достаточным условием того, чтобы группа была изоморфна кристаллографической группе. Группа линейных частей кристаллографической группы сохраняет решётку ; иными словами, в базисе решетки преобразования из записываются целочисленными матрицами.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software