The light-nanosecond is a unit of length, equal to 10−9 light-second ( m = 11.802853 in. = 0.983571 ft ). The light-nanosecond was popularized as a unit of distance by Grace Hopper as the distance which a photon could travel in one billionth of a second (roughly 30 cm or one foot): "The speed of light is one foot per nanosecond." In her speaking engagements, she was well known for passing out light-nanoseconds of wire to the audience, and contrasting it with light-microseconds (a coil of wire 1,000 times as long) and light-picoseconds (the size of ground black pepper). Over the course of her life, she found many uses for this visual aid, including demonstrating the waste of sub-optimal programming, illustrating advances in computer speed, and simply giving young scientists and policy maker
Attributes | Values |
---|
rdfs:label
| |
rdfs:comment
| - The light-nanosecond is a unit of length, equal to 10−9 light-second ( m = 11.802853 in. = 0.983571 ft ). The light-nanosecond was popularized as a unit of distance by Grace Hopper as the distance which a photon could travel in one billionth of a second (roughly 30 cm or one foot): "The speed of light is one foot per nanosecond." In her speaking engagements, she was well known for passing out light-nanoseconds of wire to the audience, and contrasting it with light-microseconds (a coil of wire 1,000 times as long) and light-picoseconds (the size of ground black pepper). Over the course of her life, she found many uses for this visual aid, including demonstrating the waste of sub-optimal programming, illustrating advances in computer speed, and simply giving young scientists and policy maker
|
dbkwik:units/prope...iPageUsesTemplate
| |
abstract
| - The light-nanosecond is a unit of length, equal to 10−9 light-second ( m = 11.802853 in. = 0.983571 ft ). The light-nanosecond was popularized as a unit of distance by Grace Hopper as the distance which a photon could travel in one billionth of a second (roughly 30 cm or one foot): "The speed of light is one foot per nanosecond." In her speaking engagements, she was well known for passing out light-nanoseconds of wire to the audience, and contrasting it with light-microseconds (a coil of wire 1,000 times as long) and light-picoseconds (the size of ground black pepper). Over the course of her life, she found many uses for this visual aid, including demonstrating the waste of sub-optimal programming, illustrating advances in computer speed, and simply giving young scientists and policy makers the ability to conceptualize the magnitude of very large and small numbers.
|