A binary relation R over a set X is transitive if whenever an element a is related to an element b, and b is in turn related to an element c, then a is also related to c. In mathematical syntax: Transitivity is a key property of both partial order relations and equivalence relations.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dcterms:subject | |
dbkwik:math/proper...iPageUsesTemplate | |
abstract |
|