ある重力場の中に有限の大きさを持つ物体があると仮定する。この時、物体表面もしくは内部の任意の位置での潮汐力による加速度は、その位置での実際の重力加速度ベクトルから物体の重心での重力加速度ベクトルを引き算したものになる。 この時、物体は必ずしも公転していなくても潮汐力は発生する。例えば物体が重力場の中を一直線に自由落下するような場合でも潮汐力の作用を受ける。 ある物体が他の物体の重力場によって受ける潮汐力の大きさは以下のようになる。ニュートンの万有引力の法則を線形化すると、力を及ぼす物体 A が他方の物体 B に及ぼす潮汐力は、近似的には A の中心からの距離の3乗に反比例する。両者の中心を結んだ直線 L 上では、潮汐力の大きさ Ft は以下のようになる: ここで G は万有引力定数、M は重力場を作る物体 A の質量、m は A の重力場によって潮汐力を受ける物体 B の質量、R は二つの物体の距離、r (≪ R) は物体 B の中心からの距離である。物体 B に働く潮汐力は物体 A に近い側と遠い側の両方で外向きに働き、これによってこの二つの点は外に膨らむことになる。 潮汐力は2物体を結ぶ直線 L から離れた位置についても計算できる。L に垂直な平面内では潮汐力は内向きに働き、その大きさは線形近似で となる。
ある重力場の中に有限の大きさを持つ物体があると仮定する。この時、物体表面もしくは内部の任意の位置での潮汐力による加速度は、その位置での実際の重力加速度ベクトルから物体の重心での重力加速度ベクトルを引き算したものになる。 この時、物体は必ずしも公転していなくても潮汐力は発生する。例えば物体が重力場の中を一直線に自由落下するような場合でも潮汐力の作用を受ける。 ある物体が他の物体の重力場によって受ける潮汐力の大きさは以下のようになる。ニュートンの万有引力の法則を線形化すると、力を及ぼす物体 A が他方の物体 B に及ぼす潮汐力は、近似的には A の中心からの距離の3乗に反比例する。両者の中心を結んだ直線 L 上では、潮汐力の大きさ Ft は以下のようになる: ここで G は万有引力定数、M は重力場を作る物体 A の質量、m は A の重力場によって潮汐力を受ける物体 B の質量、R は二つの物体の距離、r (≪ R) は物体 B の中心からの距離である。物体 B に働く潮汐力は物体 A に近い側と遠い側の両方で外向きに働き、これによってこの二つの点は外に膨らむことになる。 潮汐力は2物体を結ぶ直線 L から離れた位置についても計算できる。L に垂直な平面内では潮汐力は内向きに働き、その大きさは線形近似で となる。 潮汐力の効果は、中性子星やブラックホールといった、大きな質量を持った小さな物体の近くでは特に顕著になる。これらの天体に落ち込む物体は潮汐変形を受けて細長く引き伸ばされる(これをスパゲッティ化 (spaghettification) と呼ぶ場合もある)。次節で説明するような別の項を含む潮汐力は海の潮汐の原因となる。この場合、潮汐力を受ける物体は海に水を持った地球であり、力を及ぼす物体は月と太陽である。潮汐力はまた天体の自転と公転の同期 (tidal locking) を引き起こす。