Линзовое пространство — многообразие нечётной размерности, являющееся факторпространством сферы по изометрическому свободному действию циклической группы . Сферу всегда возможно расположить в комплексном пространстве с фиксированным базисом, так чтобы образующая , действовала на каждой координате умножениями на где . Такое действие является свободным тогда и только тогда, когда для каждого , взаимнопросто с . Это пространство обычно обозначается .
Линзовое пространство — многообразие нечётной размерности, являющееся факторпространством сферы по изометрическому свободному действию циклической группы . Сферу всегда возможно расположить в комплексном пространстве с фиксированным базисом, так чтобы образующая , действовала на каждой координате умножениями на где . Такое действие является свободным тогда и только тогда, когда для каждого , взаимнопросто с . Это пространство обычно обозначается . Фундаментальную область действия на удобно представлять себе в виде «линзы» — пересечение двух полусфер — откуда и возникло название «линзовое пространство».