In geometry, the inscribed sphere or insphere of a convex polyhedron is a sphere that is contained within the polyhedron and tangent to each of the polyhedron's faces. It is the largest sphere that is contained wholly within the polyhedron, and is dual to the dual polyhedron's circumsphere. * The sphere tangent to all faces (if one exists). * The sphere tangent to all face planes (if one exists). * The sphere tangent to a given set of faces (if one exists). * The largest sphere that can fit inside the polyhedron.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dcterms:subject | |
dbkwik:math/proper...iPageUsesTemplate | |
urlname |
|
Title |
|
abstract |
|