About: Equation of state   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The most prominent use of an equation of state is to correlate densities of gases and liquids to temperatures and pressures. One of the simplest equations of state for this purpose is the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures. However, this equation becomes increasingly inaccurate at higher pressures and lower temperatures, and fails to predict condensation from a gas to a liquid. Therefore, a number of more accurate equations of state have been developed for gases and liquids. At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions.

AttributesValues
rdfs:label
  • Equation of state
rdfs:comment
  • The most prominent use of an equation of state is to correlate densities of gases and liquids to temperatures and pressures. One of the simplest equations of state for this purpose is the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures. However, this equation becomes increasingly inaccurate at higher pressures and lower temperatures, and fails to predict condensation from a gas to a liquid. Therefore, a number of more accurate equations of state have been developed for gases and liquids. At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions.
sameAs
dcterms:subject
dbkwik:speedydelet...iPageUsesTemplate
abstract
  • The most prominent use of an equation of state is to correlate densities of gases and liquids to temperatures and pressures. One of the simplest equations of state for this purpose is the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures. However, this equation becomes increasingly inaccurate at higher pressures and lower temperatures, and fails to predict condensation from a gas to a liquid. Therefore, a number of more accurate equations of state have been developed for gases and liquids. At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. In addition, there are also equations of state describing solids, including the transition of solids from one crystalline state to another. There are equations that model the interior of stars, including neutron stars, dense matter (quark-gluon plasmas) and radiation fields. A related concept is the perfect fluid equation of state used in cosmology.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software