abstract
| - Уравне́ния Эйнште́йна (иногда встречается название «уравнения Эйнштейна — Гильберта») — уравнения гравитационного поля в общей теории относительности, связывающие между собой метрику искривлённого пространства-времени со свойствами заполняющей его материи. Термин используется и в единственном числе: «уравне́ние Эйнште́йна», так как в тензорной записи это одно уравнение, хотя в компонентах представляет собой систему уравнений в частных производных. Выглядят уравнения следующим образом: где — тензор Риччи, получающийся из тензора кривизны пространства-времени посредством свёртки его по паре индексов, R — скалярная кривизна, то есть свёрнутый тензор Риччи, — метрический тензор, — космологическая постоянная, а представляет собой тензор энергии-импульса материи, (π — число пи, c — скорость света в вакууме, G — гравитационная постоянная Ньютона). Уравнение связывает между собой тензоры 4×4, то есть, формально говоря, содержит 16 уравнений. Однако, так как все входящие в уравнения тензоры симметричны, то в четырёхмерном пространстве-времени эти уравнения равносильны 4·(4+1)/2=10 скалярным уравнениям. Тождества Бьянки приводят к уменьшению числа независимых уравнений с 10 до 6. В более краткой записи где — тензор Эйнштейна, который объединяет тензор Риччи, скалярную кривизну и метрический тензор. Тензор Эйнштейна может быть представлен как функция метрического тензора и его частных производных. Часто лямбда-член Λgμν в записи уравнений Эйнштейна принимается равным нулю, поскольку в задачах локальных масштабов, далёких от космологических, он, как правило, мал. Тогда запись ещё более упрощается: Наконец, при часто использующемся выборе единиц физических величин таким образом, чтобы скорость света и гравитационная постоянная равнялись безразмерной единице, c = G = 1 (т.н. геометризованная система единиц), запись уравнений Эйнштейна становится наиболее простой; в бескомпонентной форме: Таким образом, уравнение Эйнштейна связывает геометрию пространства-времени (левая часть уравнения) с материей и её движением (правая часть). Одним из существенных свойств уравнений Эйнштейна является их нелинейность, приводящая к невозможности использования при их решении принципа суперпозиции.
|