The Ackermann ordinal is equal to \(\varphi(1,0,0,0)\) using phi function, \(\vartheta(\Omega^3)\) using Weiermann's theta function, \( heta(\Omega^2)\) using Bird's theta function and \(\psi_0(\Omega^{\Omega^2})\) using Buchholz's psi function (see ordinal notation). It is first fixed point of map \(\alphaightarrow\varphi(\alpha,0,0)\), and also smallest ordinal beyond reach of 3-argument Veblen function.
| Attributes | Values |
|---|
| rdfs:label
| |
| rdfs:comment
| - The Ackermann ordinal is equal to \(\varphi(1,0,0,0)\) using phi function, \(\vartheta(\Omega^3)\) using Weiermann's theta function, \( heta(\Omega^2)\) using Bird's theta function and \(\psi_0(\Omega^{\Omega^2})\) using Buchholz's psi function (see ordinal notation). It is first fixed point of map \(\alphaightarrow\varphi(\alpha,0,0)\), and also smallest ordinal beyond reach of 3-argument Veblen function.
|
| sameAs
| |
| dcterms:subject
| |
| dbkwik:googology/p...iPageUsesTemplate
| |
| abstract
| - The Ackermann ordinal is equal to \(\varphi(1,0,0,0)\) using phi function, \(\vartheta(\Omega^3)\) using Weiermann's theta function, \( heta(\Omega^2)\) using Bird's theta function and \(\psi_0(\Omega^{\Omega^2})\) using Buchholz's psi function (see ordinal notation). It is first fixed point of map \(\alphaightarrow\varphi(\alpha,0,0)\), and also smallest ordinal beyond reach of 3-argument Veblen function.
|