About: Ackermann ordinal   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The Ackermann ordinal is equal to \(\varphi(1,0,0,0)\) using phi function, \(\vartheta(\Omega^3)\) using Weiermann's theta function, \( heta(\Omega^2)\) using Bird's theta function and \(\psi_0(\Omega^{\Omega^2})\) using Buchholz's psi function (see ordinal notation). It is first fixed point of map \(\alphaightarrow\varphi(\alpha,0,0)\), and also smallest ordinal beyond reach of 3-argument Veblen function.

AttributesValues
rdfs:label
  • Ackermann ordinal
rdfs:comment
  • The Ackermann ordinal is equal to \(\varphi(1,0,0,0)\) using phi function, \(\vartheta(\Omega^3)\) using Weiermann's theta function, \( heta(\Omega^2)\) using Bird's theta function and \(\psi_0(\Omega^{\Omega^2})\) using Buchholz's psi function (see ordinal notation). It is first fixed point of map \(\alphaightarrow\varphi(\alpha,0,0)\), and also smallest ordinal beyond reach of 3-argument Veblen function.
sameAs
dcterms:subject
dbkwik:googology/p...iPageUsesTemplate
abstract
  • The Ackermann ordinal is equal to \(\varphi(1,0,0,0)\) using phi function, \(\vartheta(\Omega^3)\) using Weiermann's theta function, \( heta(\Omega^2)\) using Bird's theta function and \(\psi_0(\Omega^{\Omega^2})\) using Buchholz's psi function (see ordinal notation). It is first fixed point of map \(\alphaightarrow\varphi(\alpha,0,0)\), and also smallest ordinal beyond reach of 3-argument Veblen function.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software