If one assumes that R is inifinite, the conclusion that you should wager for god follows, regardless of how small the probability (p) you assign to it. This is because a small number times infinity is infinity, so that the wager for god has the utility p*R + (1-p)*r1 = ∞, which is (infinitely) larger than the utility for wagering against god p*r2+(1-p)*r3.
Attributes | Values |
---|
rdfs:label
| - Pascal's Wager, a more formal analysis
|
rdfs:comment
| - If one assumes that R is inifinite, the conclusion that you should wager for god follows, regardless of how small the probability (p) you assign to it. This is because a small number times infinity is infinity, so that the wager for god has the utility p*R + (1-p)*r1 = ∞, which is (infinitely) larger than the utility for wagering against god p*r2+(1-p)*r3.
|
dcterms:subject
| |
dbkwik:atheism/pro...iPageUsesTemplate
| |
abstract
| - If one assumes that R is inifinite, the conclusion that you should wager for god follows, regardless of how small the probability (p) you assign to it. This is because a small number times infinity is infinity, so that the wager for god has the utility p*R + (1-p)*r1 = ∞, which is (infinitely) larger than the utility for wagering against god p*r2+(1-p)*r3. The counter-points above show that the argument is mistaken. The resulting guillibility to any claim is especially worriesome from the point of view of deision theory. Clearly, there is something very wrong with the argument, but it is actually not easy to see what it is. We shall argue here that the core problem is, of all things, (A3).
|