About: dbkwik:resource/xfGZ3kWmt-bG0muuc0fAzw==   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

AttributesValues
rdfs:label
  • Гильбертово пространство
rdfs:comment
  • Гильбертово пространство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие "Г. п." находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики. Для любых векторов х, y Î l2 формула 5)
  • Ги́льбертово простра́нство — банахово пространство, норма которого порождена положительно определённым скалярным произведением. Названо в честь математика Д. Гильберта. Характеристическим свойством, выделяющим гильбертовы пространства среди прочих банаховых пространств, является тождество параллелограмма: Если удовлетворяющее тождеству параллелограмма банахово пространство является вещественным, то отвечающее его норме скалярное произведение задаётся равенством Аналогично, если это пространство является комплексным, то отвечающее его норме скалярное произведение задаётся равенством
dcterms:subject
dbkwik:ru.math/pro...iPageUsesTemplate
abstract
  • Гильбертово пространство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие "Г. п." находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики. Первоначально Г. п. понималось как пространство последовательностей со сходящимся рядом квадратов (т. н. пространство l2). Элементами (векторами) такого пространства являются бесконечные числовые последовательности такие, что ряд x21 + x22 +... + х2n + ... сходится. Сумму двух векторов х + y и вектор lx, где l — действительное число, определяют естественным образом: Для любых векторов х, y Î l2 формула определяет их скалярное произведение, а под длиной (нормой) вектора х понимается неотрицательное число Скалярное произведение всегда конечно и удовлетворяет неравенству |(х, у)| £ ||x|| ||y||. Последовательность векторов хn называется сходящейся к вектору х, если ||хn—х|| ® 0 при n ® ¥. Многие определения и факты теории конечномерных евклидовых пространств переносятся и на Г. п. Например, формула где 0 £ j £ p определяет угол j между векторами х и у. Два вектора х и у называются ортогональными, если (х, у) = 0. Пространство l2 полно: всякая фундаментальная последовательность Коши элементов этого пространства (т. е. последовательность хn, удовлетворяющая условию ||хп—хm||® 0 при n, m ® ¥) имеет предел. В отличие от евклидовых пространств, Г. п. l2 бесконечномерно, т. е. в нём существуют бесконечные системы линейно независимых векторов; например, такую систему образуют единичные векторы При этом для любого вектора x из l2 имеет место разложение по системе {en}. Другим важным примером Г. п. служит пространство l2 всех измеримых функций, заданных на некотором отрезке [a, b], для которых конечен интеграл понимаемый как интеграл в смысле Лебега. При этом функции, отличающиеся друг от друга лишь на множество меры нуль, считаются тождественными. Сложение функций и умножение их на число определяется обычным способом, а под скалярным произведением понимается интеграл Норма в этом случае равна Роль единичных векторов предыдущего примера здесь могут играть любые функции ji(x) из L2, обладающие свойствами ортогональности и нормированности а также следующим свойством замкнутости: если f(x) принадлежит L2 и то f(x) = 0 всюду, кроме множества меры нуль. На отрезке [0,2p] в качестве такой системы функций можно взять тригонометрическую систему Разложению (1) соответствует разложение функции f(x) из L2 в ряд Фурье сходящийся к f(x) по норме пространства L2. При этом для всякой функции f(x) выполняется равенство Парсеваля Соответствие между функциями f(x) из L2 и последовательностями их коэффициентов Фурье a0, a1, b1, a2, b2,... является взаимно однозначным отображением L2 на l2, сохраняющим операции сложения, умножения на числа, а также сохраняющим длины и скалярные произведения. Т. о., эти пространства изоморфны и изометричны, значит имеют одинаковое строение. В более широком смысле под Г. п. понимают произвольное линейное пространство, в котором задано скалярное произведение и которое является полным относительно нормы, порождаемой этим скалярным произведением. В зависимости от того, определено ли для элементов Г. п. Н умножение только на действительные числа или же элементы из Н можно умножать на произвольные комплексные числа, различают действительное и комплексное Г. п. В последнем случае под скалярным произведением понимают комплексную функцию (х, у), определённую для любой пары х, у элементов из Н и обладающую следующими свойствами: 1) (х, х) = 0 в том и только том случае, если х = 0, 2) (х, х) ³ 0 для любого x из Н, 3) (х + у, z) = (x, z) + (у, z), 4) (lx, у) = l(x, у) для любого комплексного числа l, 5) где черта означает комплексно сопряжённую величину. Норма элемента х определяется равенством Комплексные Г. п. играют в математике и в её приложениях значительно большую роль, чем действительные Г. п. Одним из важнейших направлений теории Г. п. является изучение линейных операторов в Г. п. (см. Операторов теория). Именно с этим кругом вопросов связаны многочисленные применения Г. п. в теории дифференциальных и интегральных уравнений, теории вероятностей, квантовой механике и т. д. Лит.: Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965; Данфорд Н., Шварц Дж., Линейные операторы, т. 1 — Общая теория, пер. с англ., М., 1962; Дэй М. М., Нормированные линейные пространства, пер. с англ., М., 1961.
  • Ги́льбертово простра́нство — банахово пространство, норма которого порождена положительно определённым скалярным произведением. Названо в честь математика Д. Гильберта. Характеристическим свойством, выделяющим гильбертовы пространства среди прочих банаховых пространств, является тождество параллелограмма: Если удовлетворяющее тождеству параллелограмма банахово пространство является вещественным, то отвечающее его норме скалярное произведение задаётся равенством Аналогично, если это пространство является комплексным, то отвечающее его норме скалярное произведение задаётся равенством Наименьшая из мощностей подмножеств гильбертова пространства , для которых замыкание линейной оболочки совпадает с , называется размерностью пространства . Справедливо следующее утверждение:
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software