On-Board Diagnostics, or OBD, in an automotive context, is a generic term referring to a vehicle's self-diagnostic and reporting capability. OBD systems give the vehicle owner or a repair technician access to state of health information for various vehicle sub-systems. The amount of diagnostic information available via OBD has varied widely since the introduction in the early 1980's of on-board vehicle computers, which made OBD possible. Early instances of OBD would simply illuminate a malfunction indicator light, or MIL, if a problem were detected—but would not provide any information as to the nature of the problem. Modern OBD implementations use a standardized fast digital communications port to provide myriad realtime data in addition to a standardized series of diagnostic trouble code
| Attributes | Values |
|---|
| rdfs:label
| |
| rdfs:comment
| - On-Board Diagnostics, or OBD, in an automotive context, is a generic term referring to a vehicle's self-diagnostic and reporting capability. OBD systems give the vehicle owner or a repair technician access to state of health information for various vehicle sub-systems. The amount of diagnostic information available via OBD has varied widely since the introduction in the early 1980's of on-board vehicle computers, which made OBD possible. Early instances of OBD would simply illuminate a malfunction indicator light, or MIL, if a problem were detected—but would not provide any information as to the nature of the problem. Modern OBD implementations use a standardized fast digital communications port to provide myriad realtime data in addition to a standardized series of diagnostic trouble code
|
| dcterms:subject
| |
| dbkwik:hyundai/pro...iPageUsesTemplate
| |
| abstract
| - On-Board Diagnostics, or OBD, in an automotive context, is a generic term referring to a vehicle's self-diagnostic and reporting capability. OBD systems give the vehicle owner or a repair technician access to state of health information for various vehicle sub-systems. The amount of diagnostic information available via OBD has varied widely since the introduction in the early 1980's of on-board vehicle computers, which made OBD possible. Early instances of OBD would simply illuminate a malfunction indicator light, or MIL, if a problem were detected—but would not provide any information as to the nature of the problem. Modern OBD implementations use a standardized fast digital communications port to provide myriad realtime data in addition to a standardized series of diagnostic trouble codes, or DTCs, which allow one to rapidly identify and remedy malfunctions within the vehicle.
|