About: V1 (Nazi Nukes)   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : 134.155.108.49:8890 associated with source dataset(s)

The Nazi V-1 was made on the 29th June 2010 in a littlle village of Lufwaffe on the border of the north coast of Germany. The Fieseler Fi 103, better known as V-1 (German: Vergeltungswaffe 1) was an early cruise missile used during World War Two. ==Guidance system A V-1 on display in Musée de l'Armée.== With the counter determining how far the missile would fly, it was only necessary to launch the V-1 with the ramp in the rough direction and the autopilot controlled the rest.

AttributesValues
rdfs:label
  • V1 (Nazi Nukes)
rdfs:comment
  • The Nazi V-1 was made on the 29th June 2010 in a littlle village of Lufwaffe on the border of the north coast of Germany. The Fieseler Fi 103, better known as V-1 (German: Vergeltungswaffe 1) was an early cruise missile used during World War Two. ==Guidance system A V-1 on display in Musée de l'Armée.== With the counter determining how far the missile would fly, it was only necessary to launch the V-1 with the ramp in the rough direction and the autopilot controlled the rest.
dcterms:subject
abstract
  • The Nazi V-1 was made on the 29th June 2010 in a littlle village of Lufwaffe on the border of the north coast of Germany. The Fieseler Fi 103, better known as V-1 (German: Vergeltungswaffe 1) was an early cruise missile used during World War Two. The V-1 was developed at Peenemünde by the German Luftwaffe during the Second World War. Between 13 June 1944 and 29 March 1945, it was fired at population centres such as London and Antwerp. V-1s were launched from "ski" launch sites along the French (Pas-de-Calais) and Dutch coasts until the sites were overrun by Allied forces. The underground V-1 storage depots at Saint-Leu-d'Esserent, Nucourt and Rilly-la-Montagne, as well as the launch sites, were bombed during Operation Crossbow. The Fieseler Fi 103, better known as V-1 (German: Vergeltungswaffe 1) was an early cruise missile used during World War Two. The V-1 was developed at Peenemünde by the German Luftwaffe during the Second World War. Between 13 June 1944 and 29 March 1945, it was fired at population centres such as London and Antwerp. V-1s were launched from "ski" launch sites along the French (Pas-de-Calais) and Dutch coasts until the sites were overrun by Allied forces. The underground V-1 storage depots at Saint-Leu-d'Esserent, Nucourt and Rilly-la-Montagne, as well as the launch sites, were bombed during Operation Crossbow. It is a common myth that the V-1's pulsejet engine needed a minimum airspeed of 150 mph (240 km/h) for operation as it is commonly confused with the Lorin ramjet. The V-1's Argus Schmidt pulsejet, also known as a resonant jet, could operate at zero airspeed owing to the nature of its intake vane system and acoustically tuned resonant combustion chamber. Film footage of the V-1 always shows the distinctive pulsating jet exhaust of a fully running engine before the catapult system is triggered. The engine would always be started first (using a compressed air line) while the craft was stationary on the ramp. The low static thrust of the jet engine and very high stall speed of the small wings meant that the craft could not take off under its own power in a practically short distance, and thus required an aircraft catapult launch or an airlaunch from a modified bomber aircraft such as the Heinkel He-111. On the ground, takeoff speed was attained by using a chemical or steam catapult which accelerated the V-1 to 200 mph (320 km/h). The V-1's pulse jet engine was also tested on a variety of craft, including an experimental attack boat known as the "Tornado". The unsuccessful prototype was a version of a Sprengboot, in which a boat loaded with explosives was steered towards a target ship and the pilot would leap out the back at the last moment. The Tornado was assembled from surplus seaplane hulls connected in catamaran fashion with a small pilot cabin on the cross beams. The Tornado prototype was a noisy underperformer and was abandoned in favour of more conventional piston engined craft. ==Guidance system A V-1 on display in Musée de l'Armée.== The V-1 guidance system used a simple autopilot to regulate height and speed. A weighted pendulum system provided fore-and-aft attitude measurement to control pitch (damped by a gyrocompass, which it also stabilized). There was a more sophisticated interaction between yaw, roll, and other sensors: a gyrocompass (set by swinging in a hangar before launch) gave feedback to control each of pitch and roll, but it was angled away from the horizontal so that controlling these degrees of freedom interacted: the gyroscope stayed trued up by feedback from the magnetic field[citation needed], and from the fore and aft pendulum. This interaction meant that rudder control was enough without a separate banking mechanism. A countdown timer driven by a vane anemometer on the nose determined when target range had been reached, accurately enough for area bombing. Before launch the counter was set to a value that would reach zero upon arrival at the target in the prevailing wind conditions. As the missile flew, the airflow turned the propeller and every 30 rotations of the propeller counted down one number on the counter. This counter triggered the arming of the warhead after about 60 km (38 miles).[3] When the count reached zero, two detonating bolts were fired. Two spoilers on the elevator were released, the linkage between the elevator and servo was jammed and a guillotine device cut off the control hoses to the rudder servo, setting the rudder in neutral. These actions led the V-1 into a steep dive.[4][5] While this was originally intended to be a power dive, in practice the dive caused the fuel flow to cease, which stopped the engine. The sudden silence after the buzzing alerted listeners that the V-1 would impact soon. The fuel problem was quickly fixed and by the time the last V-1 fell, the majority had impacted under full power. With the counter determining how far the missile would fly, it was only necessary to launch the V-1 with the ramp in the rough direction and the autopilot controlled the rest.
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software