Las estrellas son sistemas que permanecen estables durante la mayor parte de su vida. Pero los cambios de una fase a otra son etapas de transición que se rigen en escalas de tiempo mucho más cortas. A pesar de eso casi todas las escalas temporales superan con mucho a la humana. Las estrellas se hallan en un delicado equilibrio hidrostático entre la presión originada por las reacciones nucleares y la atracción gravitatorioria generada por toda su masa. La aceleración vertical neta del plasma que la compone habitualmente es casi nula por lo que casi siempre se dice que las estrellas están en condiciones cuasiestáticas. De hecho, vence la presión lo que conlleva ligeras pérdidas de masa en forma de viento solar, fulguraciones, eyecciones de masa coronal u otros fenómenos extrusivos. Pero para
Las estrellas son sistemas que permanecen estables durante la mayor parte de su vida. Pero los cambios de una fase a otra son etapas de transición que se rigen en escalas de tiempo mucho más cortas. A pesar de eso casi todas las escalas temporales superan con mucho a la humana. Las estrellas se hallan en un delicado equilibrio hidrostático entre la presión originada por las reacciones nucleares y la atracción gravitatorioria generada por toda su masa. La aceleración vertical neta del plasma que la compone habitualmente es casi nula por lo que casi siempre se dice que las estrellas están en condiciones cuasiestáticas. De hecho, vence la presión lo que conlleva ligeras pérdidas de masa en forma de viento solar, fulguraciones, eyecciones de masa coronal u otros fenómenos extrusivos. Pero para las estrellas de menos de 10 masas solares estas pérdidas son despreciables con respecto a su masa total. Así pues podemos escribir una ecuación que iguale la presión producida por el movimiento radial del material estelar a la suma de las fuerzas de presión positiva (hacia afuera) generadas en el núcleo y las fuerzas negativas de la gravedad (hacia adentro). Donde ρ (rho) es la densidad, r la distancia al centro, S la superficie y Fg la fuerza gravitatoria, Fp la fuerza de presión. En las condiciones de equilibrio esta ecuación valdría aproximadamente cero ya que ambas fuerzas tenderían a igualarse.